

Intel® C++ Compiler for Linux* Systems
User's Guide

Document Number: 253254-018

Disclaimer and Legal Information
Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or
use of Intel products including liability or warranties relating to fitness for a particular purpose,
merchantability, or infringement of any patent, copyright or other intellectual property right. Intel
products are not intended for use in medical, life saving, or life sustaining applications.

This User�s Guide as well as the software described in it is furnished under license and may only
be used or copied in accordance with the terms of the license. The information in this manual is
furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any software that may
be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this User�s Guide may contain software defects which may cause the
product to deviate from published specifications. Current characterized software defects are
available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo,
Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium,
Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2004.

i

Table Of Contents
Welcome to the Intel® C++ Compiler ... 1

What's New in This Release .. 1
Features and Benefits.. 2
Product Web Site and Support .. 2
System Requirements.. 3
FLEXlm* Electronic Licensing.. 3
Related Publications .. 3
How to Use This Document ... 4

Compiler Options Quick Reference .. 7
New Options... 7
Options Quick Reference Guide .. 11
Compiler Options Cross Reference ... 31
Default Compiler Options... 37

Building and Debugging Applications.. 39
Getting Started... 39
Building Applications from the Command Line .. 40
Compilation Options... 43
Linking.. 57
Debugging.. 58

Using Libraries ... 60
Default Libraries ... 60
Intel® Shared Libraries .. 62
Managing Libraries .. 62
Compiling for Non-shared Libraries ... 63

gcc* Compatibility .. 67
gcc* Interoperability ... 71
gcc Built-in Functions... 74
gcc Function Attributes .. 75

Language Conformance.. 76
Conformance Options .. 76
Conformance to the C Standard .. 76
Conformance to the C++ Standard.. 78

Compiler Optimizations.. 79
Optimization Levels.. 79
Floating-point Optimizations .. 81
Optimizing for Specific Processors .. 84
Interprocedural Optimizations.. 91
Multifile IPO.. 94
Inline Expansion of Functions.. 97
Profile-guided Optimizations.. 99
High-level Language Optimizations (HLO) .. 116

Parallel Programming.. 118

Table Of Contents

ii

Vectorization (IA-32 only)... 119
Auto Parallelization .. 132
Parallelization with OpenMP*... 136
Intel Extensions to OpenMP .. 148

Optimization Support Features... 154
Compiler Directives.. 154
Optimizer Report Generation ... 159
Timing Your Application ... 160

Compiler Limits .. 162

Key Files ... 163
Key Files Summary for IA-32 Compiler ... 163
Key Files Summary for Itanium® Compiler.. 166

Diagnostics and Messages.. 168
Diagnostic Messages... 168
Language Diagnostics ... 168
Suppressing Warning Messages with lint Comments ... 169
Suppressing Warning Messages or Enabling Remarks .. 169
Limiting the Number of Errors Reported .. 170
Remark Messages ... 170

Intel Math Library .. 171
Using the Intel Math Library ... 172
Math Functions .. 176

Intel® C++ Intrinsics Reference.. 199
Introduction .. 199
Intrinsics Implementation Across All IA.. 204
MMX™ Technology Intrinsics .. 210
Streaming SIMD Extensions .. 221
Streaming SIMD Extensions 2 ... 249
New IA-32 Intrinsics ... 283
Intrinsics for Itanium® Instructions... 285
Data Alignment, Memory Allocation Intrinsics, and Inline Assembly....................................... 307
Intrinsics Cross-processor Implementation.. 311

Intel® C++ Class Libraries ... 332
Introduction to the Class Libraries ... 332
Integer Vector Classes... 339
Floating-point Vector Classes.. 363
Classes Quick Reference .. 381
Programming Example .. 389

Index.. 391

1

Welcome to the Intel® C++ Compiler
Welcome to the Intel® C++ Compiler. Before you use the compiler, see System Requirements.

Most Linux* distributions include the GNU* C library, assembler, linker, and others. The Intel
C++ Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section of this User's Guide to gain an
overview of the topics presented. For the latest information, visit the Intel Web site:
http://developer.intel.com/.

What's New in This Release
New features for this version of the Intel® C++ Compiler include:

• New gcc Interoperability Options

• Improved gcc Compatibility

• Support for Precompiled Header Files

• New gcc Built-in Functions

• New gcc Function Attributes

• New optimization support for the Intel® Pentium® 4 processor with Streaming SIMD
Extensions 3 (SSE3)

• New Processor-specific Run Time Checks for IA-32

• New IA-32 Intrinsics for the Intel Pentium 4 processor with Streaming SIMD Extensions 3
(SSE3)

• New Synchronization Primitive intrinsics for Itanium®-based systems

• New Code-Coverage and Test Prioritization Tools

• New Symbol Visibility Options

• New debug support for IPO

• Updates to Intel Math Library

• Other New Compiler Options

• New functionality for Invoking the Compiler from the Command Line

For further information on New Features, see the Release Notes.

Intel® C++ Compiler for Linux* Systems User's Guide

2

Features and Benefits
The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as profile-guided optimization, prefetch
instruction and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2
(SSE2), the Intel C++ Compiler provides high performance.

Feature Benefit

High Performance Achieve a significant performance gain by using optimizations

Support for Streaming
SIMD Extensions

Advantage of Intel microarchitecture

Automatic vectorizer Advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support Shared memory parallel programming

Floating-point
optimizations

Improved floating-point performance

Data prefetching Improved performance due to the accelerated data delivery

Interprocedural
optimizations

Larger application modules perform better

Profile-guided
optimization

Improved performance based on profiling frequently-used functions

Processor dispatch Taking advantage of the latest Intel architecture features while
maintaining object code compatibility with previous generations of
Intel® Pentium® processors (for IA-32-based systems only).

Product Web Site and Support
For the latest information about Intel® C++ Compiler, visit
http://developer.intel.com/software/products/

For specific details on the Itanium® architecture, visit the web site at
http://developer.intel.com/design/itanium/under_lnx.htm.

Welcome to the Intel® C++ Compiler

3

System Requirements
IA-32 Processor System Requirements

• A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium
4 processor recommended).

• 128 MB of RAM (256 MB recommended).

• 100 MB of disk space.

Itanium® Processor System Requirements
• A computer with an Itanium processor.

• 256 MB of RAM.

• 100 MB of disk space.

Software Requirements
See the Release Notes for a complete list of system requirements.

FLEXlm* Electronic Licensing
The Intel® C++ Compiler uses Macrovision's FLEXlm* licensing technology. The compiler
requires a valid license file in the /licenses directory in the installation path. The default
directory is /opt/intel_cc_80/licenses. The license files have a .lic file extension.

If you require a counted license, see Using the Intel® License Manager for FLEXlm*
(flex_ug.pdf).

Related Publications
The following documents provide additional information relevant to the Intel® C++ Compiler:

• ISO/IEC 9989:1990, Programming Languages--C

• ISO/IEC 14882:1998, Programming Languages--C++.

• The Annotated C++ Reference Manual, Special Edition, Ellis, Margaret; Stroustrup, Bjarne,
Addison Wesley, 1991. Provides information on the C++ programming language.

• The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA 01867.

• The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W.,
Prentice Hall, 1988. Provides information on the K & R definition of the C language.

• C: A Reference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall,
1991. Provides information on the ANSI standard and extensions of the C language.

• Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel
Corporation, doc. number 243190.

• Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference
Manual, Intel Corporation, doc. number 243191.

• Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel
Corporation, doc. number 243192.

• Intel® Itanium® Assembler User's Guide.

• Intel® Itanium®-based Assembly Language Reference Manual.

Intel® C++ Compiler for Linux* Systems User's Guide

4

• Itanium® Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

• Itanium® Architecture Software Developer's Manual Vol. 2: System Architecture, Intel
Corporation, doc. number 245318-001.

• Itanium® Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

• Itanium® Architecture Software Developer's Manual Vol. 4: Itanium® Processor
Programmer's Guide, Intel Corporation, doc. number 245319-001.

• Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.

• Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number
241618.

• Intel Architecture MMX™ Technology Programmer's Reference Manual, Intel Corporation,
doc. number 241618.

• Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc.
number 242693.

• Pentium® II Processor Developer's Manual, Intel Corporation, doc. number 243502-001.

• Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.

• Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-
005.

Most Intel documents are also available from the Intel Corporation Web site at
http://www.intel.com.

How to Use This Document
This User's Guide explains how you can use the Intel® C++ Compiler. It provides information on
how to get started with the Intel C++ Compiler, how this compiler operates and what capabilities it
offers for high performance. You learn how to use the standard and advanced compiler
optimizations to gain maximum performance for your application.

This documentation assumes that you are familiar with the C and C++ programming languages
and with the Intel processor architecture. You should also be familiar with the host computer's
operating system.

 Note

This document explains how information and instructions apply differently to each targeted
architecture. If there is no specific indication to either architecture, the description is applicable to
both architectures.

Welcome to the Intel® C++ Compiler

5

Conventions
This documentation uses the following conventions:

This type
style

Indicates an element of syntax, reserved word, keyword, filename,
computer output, or part of a program example. The text appears in
lowercase unless uppercase is significant.

This type
style

Indicates the exact characters you type as input.

This type
style

Indicates a placeholder for an identifier, an expression, a string, a
symbol, or a value. Substitute one of these items for the placeholder.

[items] Indicates that the items enclosed in brackets are optional.

{ item1 |
item2 |... }

Used for option's version; for example, option -x{K|W|B|N|P} has
these versions: -xK, -xW, -xB, -xN and -xP.

... (ellipses) Indicate that you can repeat the preceding item.

Naming Syntax for the Intrinsics
Most intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and
sub for subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two
letters of each suffix denotes whether the data is packed (p), extended
packed (ep), or scalar (s). The remaining letters denote the type:

• __s single-precision floating point

• __d double-precision floating point

• __i128 signed 128-bit integer

• __i64 signed 64-bit integer

• __u64 unsigned 64-bit integer

• __i32 signed 32-bit integer

• __u32 unsigned 32-bit integer

• __i16 signed 16-bit integer

• __u16 unsigned 16-bit integer

• __i8 signed 8-bit integer

• __u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0
is the lowest word of r. Some intrinsics are "composites" because they require more than one
instruction to implement them.

Intel® C++ Compiler for Linux* Systems User's Guide

6

The packed values are represented in right-to-left order, with the lowest value being used for
scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0}; __m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0); __m128d t = _mm_setr_pd(1.0,
2.0);

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their
arguments to be immediates (constant integer literals).

See Also Naming Syntax and Usage for intrinsics.

Naming Syntax for the Class Libraries
The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<type><signedness><bits>vec<elements>
{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

where

<type> Indicates floating point (F) or integer (I)

<signedness> Indicates signed (s) or unsigned (u). For the Ivec class, leaving this
field blank indicates an intermediate class. There are no unsigned Fvec
classes, therefore for the Fvec classes, this field is blank.

<bits> Specifies the number of bits per element

<elements> Specifies the number of elements

7

Compiler Options Quick Reference
Conventions Used in the Options Quick Guide Tables

Convention Definition

[-] If an option includes "[-]" as part of the definition, then the option
can be used to enable or disable the feature. For example, the -
c99[-] option can be used as -c99 (enable c99 support) or -c99-
(disable c99 support).

[n] Indicates that the value n in [] can be omitted or have various values.

Values in {} with
vertical bars

Used for option's version; for example, option -x{K|W|N|B|P} has
these versions: -xK, -xW, -xN, -xB, and -xP.

{n} Indicates that option must include one of the fixed values for n.

Words in this
style following an
option

Indicate option's required argument(s). Arguments are separated by
comma if more than one are required.

New Options
• Options specific to IA-32 architecture

• Options specific to the Itanium® architecture (Itanium-based systems only)

• Options supported on both IA-32 and Itanium-based systems.

Option Description Default

-alias_args[-] This option implies arguments
may be aliased [not aliased].

-alias_args

-auto_ilp32
Itanium-based
systems only

Specifies that the application
cannot exceed a 32-bit address
space, which allows the compiler
to use 32-bit pointers whenever
possible. To use this option, you
must also specify -ipo. Using the
-auto_ilp32 option on
programs that can exceed 32-bit
address space (2**32) may cause
unpredictable results during
program execution.

OFF

-axB
IA-32 only

Generates specialized code for
Intel® Pentium® M and
compatible Intel processors.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

8

Option Description Default

-axN
IA-32 only

Generates specialized code for
Intel Pentium 4 and compatible
Intel processors.

OFF

-axP
IA-32 only

Generates specialized code for the
Intel Pentium 4 processor with
Streaming SIMD Extensions 3
(SSE3).

OFF

-complex_limited_range[-] Enables the use of "delete basic
algebraic expansions" of some
arithmetic operations involving
data of type _Complex. This can
cause some performance
improvements in programs that
use _Complex arithmetic, but
values at the extremes of the
exponent range may not compute
correctly. Default is -
complex_limited_range-.

OFF

-create_pch filename Manual creation of precompiled
header (filename.pchi).

OFF

-cxxlib-gcc Link using C++ run-time libraries
provided with gcc (requires gcc
3.2 or above).

OFF

-cxxlib-icc Link using C++ run-time libraries
provided by Intel.

ON

-fast Maximize speed across the entire
program. Turns on -O3, -ipo,
and -static.

OFF

-fminshared Compilation is for the main
executable. Absolute addressing
can be used and non-position
independent code generated for
symbols that are at least protected.

OFF

-fno-common Enables the compiler to treat
common variables as if they were
defined, allowing the use of
gprel addressing of common
data variables.

OFF

-fpstkchk
IA-32 only

Generates extra code after every
function call to assure the FP stack
is in the expected state.

OFF

Compiler Options Quick Reference

9

Option Description Default

-fvisibility=
[extern|default|protected
|hidden|internal]

Global symbols (common and
defined data and functions) will
get the visibility attribute given by
default. Symbol visibility
attributes explicitly set in the
source code or using the symbol
visibility attribute file options will
override the -fvisibility
setting.

OFF

-fvisibility-extern=file Space separated symbols listed in
the file argument will get
visibility set to extern.

OFF

-fvisibility-default=file Space separated symbols listed in
the file argument will get
visibility set to default.

OFF

-fvisibility-
protected=file

Space separated symbols listed in
the file argument will get
visibility set to protected.

OFF

-fvisibility-hidden=file Space separated symbols listed in
the file argument will get
visibility set to hidden.

OFF

-fvisibility-internal=file Space separated symbols listed in
the file argument will get
visibility set to internal.

OFF

-fwritable-strings Ensure that string literals are
placed in a writable data section.

OFF

-gcc-name=name Use this option to specify the
location of g++ when compiler
cannot locate gcc C++ libraries.
For use with -cxxlib-gcc
configuration. Use this option
when referencing a non-standard
gcc installation.

OFF

-gcc-version=nnn This option provides compatible
behavior with gcc, where nnn
indicates the gcc version. This
version of the Intel compiler
supports -gcc-version=320
(Default).

ON

Intel® C++ Compiler for Linux* Systems User's Guide

10

Option Description Default

-isystemdir Add directory dir to the start of
the system include path.

OFF

-no-gcc Do not predefine the __GNUC__,
__GNUC_MINOR__, and
__GNUC_PATCHLEVEL__
macros.

OFF

-nostdinc Same as -X. OFF

-pch Automatic processing for
precompiled headers.

OFF

-pch_dir dirname Directs the compiler to find and/or
create a file for pre-compiled
headers in dirname.

OFF

-prefetch[-] Enables [disables] the insertion of
software prefetching by the
compiler. Default is -prefetch.

ON

-prof_format_32 By default, the Intel compiler
creates 64-bit profiling counters
(.dyn and .dpi). This option
creates 32-bit counters for
compatibility with the Intel C++
Compiler 7.0.

OFF

-shared-libcxa Link Intel libcxa C++ library
dynamically.

ON

-static-libcxa Link Intel libcxa C++ library
statically.

OFF

-strict_ansi Strict ANSI conformance dialect. OFF

-T file Direct linker to read link
commands from file.

OFF

-use_pch filename Manual use of precompiled header
(filename.pchi).

OFF

-Wbrief Enable a mode in which a shorter
form of the diagnostic output is
used. When enabled, the original
source line is not displayed and the
error message text is not wrapped
when too long to fit on a single
line.

OFF

Compiler Options Quick Reference

11

Option Description Default

-Wcheck Performs compile-time code
checking for code that exhibits
non-portable behavior, represents
a possible unintended code
sequence, or possibly affects
operation of the program because
of a quiet change in the ANSI C
Standard.

OFF

-Wp64
Itanium-based
systems only

Print diagnostics for 64-bit
porting.

-xB
IA-32 only

Generates specialized code for
Intel Pentium M and compatible
Intel processors.

OFF

-xN
IA-32 only

Generates specialized code for
Intel Pentium 4 and compatible
Intel processors.

OFF

-xP
IA-32 only

Generates specialized code for the
Intel Pentium 4 processor with
Streaming SIMD Extensions 3
(SSE3).

OFF

Options Quick Reference Guide
This topic provides a reference to all the compiler options and some linker control options.

• Options specific to IA-32 architecture

• Options specific to the Itanium® architecture

• Options supported on both IA-32 and Itanium-based systems.

Option Description Default

-A- Disables all predefined macros. OFF

-[no]align
IA-32 only

Analyze and reorder memory
layout for variables and arrays.

OFF

-[no]restrict Enables/disables pointer
disambiguation with the
restrict qualifier.

OFF

-Aname[(value)] Associates a symbol name with
the specified sequence of
value. Equivalent to an
#assert preprocessing
directive.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

12

Option Description Default

-alias_args[-] This option implies arguments
may be aliased [not aliased].

-alias_args

-ansi Equivalent to GNU* ANSI. OFF

-ansi_alias[-] -ansi_alias directs the
compiler to assume the
following:

• Arrays are not accessed
out of bounds.

• Pointers are not cast to
non-pointer types, and
vice-versa.

• References to objects of
two different scalar types
cannot alias. For example,
an object of type int
cannot alias with an object
of type float, or an
object of type float
cannot alias with an object
of type double.

If your program satisfies the
above conditions, setting the -
ansi_alias flag will help the
compiler better optimize the
program. However, if your
program does not satisfy one of
the above conditions, the -
ansi_alias flag may lead the
compiler to generate incorrect
code.

OFF

-auto_ilp32
Itanium-based
systems only

Specifies that the application
cannot exceed a 32-bit address
space, which allows the
compiler to use 32-bit pointers
whenever possible. To use this
option, you must also specify -
ipo. Using the -auto_ilp32
option on programs that can
exceed 32-bit address space
(2**32) may cause
unpredictable results during
program execution.

OFF

Compiler Options Quick Reference

13

Option Description Default

-ax{K|W|N|B|P}
IA-32 only

Generates specialized code for
processor-specific codes K, W, N,
B, and P while also generating
generic IA-32 code.

• K = Intel® Pentium® III
and compatible Intel
processors

• W = Intel Pentium 4 and
compatible Intel
processors

• N = Intel Pentium 4 and
compatible Intel
processors

• B = Intel Pentium M and
compatible Intel
processors

• P = Intel Pentium 4
processor with Streaming
SIMD Extensions 3
(SSE3)

OFF

-C Places comments in
preprocessed source output.

OFF

-c Stops the compilation process
after an object file has been
generated. The compiler
generates an object file for each
C or C++ source file or
preprocessed source file. Also
takes an assembler file and
invokes the assembler to
generate an object file.

OFF

-c99[-] Enables [disables] C99 support
for C programs.

ON

-complex_limited_range[-] Enables the use of "delete basic
algebraic expansions" of some
arithmetic operations involving
data of type _Complex. This
can cause some performance
improvements in programs that
use _Complex arithmetic, but
values at the extremes of the
exponent range may not
compute correctly. Default is -
complex_limited_range-
.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

14

Option Description Default

-create_pch filename Manual creation of precompiled
header (filename.pchi).

OFF

-cxxlib-gcc Link using C++ run-time
libraries provided with gcc
(requires gcc 3.2 or above)

OFF

-cxxlib-icc Link using C++ run-time
libraries provided by Intel.

ON

-dM Output macro definitions in
effect after preprocessing (use
with -E).

OFF

-Dname[=value] Defines a macro name and
associates it with the specified
value. Equivalent to a
#define preprocessor
directive.

OFF

-dryrun Show driver tool commands, but
do not execute tools.

OFF

-dynamic-linkerfilename Selects a dynamic linker
(filename) other than the
default.

OFF

-E Stops the compilation process
after the C or C++ source files
have been preprocessed, and
writes the results to stdout.

OFF

-EP Preprocess to stdout omitting
#line directives.

OFF

-f[no]verbose-asm Produce assemblable file with
compiler comments.

ON

-falias Assume aliasing in program. ON

-fast Maximize speed across the
entire program. Turns on -O3, -
ipo, and -static.

OFF

-fcode-asm Produce assemblable file with
optional code annotations.
Requires -S.

OFF

-ffnalias Assume aliasing within
functions

ON

Compiler Options Quick Reference

15

Option Description Default

-fminshared Compilation is for the main
executable. Absolute addressing
can be used and non-position
independent code generated for
symbols that are at least
protected.

OFF

-fno-alias Assume no aliasing in program. OFF

-fno-common Enables the compiler to treat
common variables as if they
were defined, allowing the use
of gprel addressing of
common data variables.

OFF

-fno-fnalias Assume no aliasing within
functions, but assume aliasing
across calls.

OFF

-fno-rtti Disable RTTI support. OFF

-fnsplit[-]
Itanium-based
systems only

Enables [disables] function
splitting. Default is ON with -
prof_use. To disable function
splitting when you use -
prof_use, also specify -
fnsplit-.

OFF

-fp
IA-32 only

Disable using the EBP register
as general purpose register.

OFF

-fpic, -fPIC For IA-32, this option generates
position independent code.
For Itanium-based systems, this
option generates code allowing
full symbol preemption.

OFF

-fp_port
IA-32 only

Round fp results at assignments
and casts. Some speed impact.

OFF

-fpstkchk
IA-32 only

Generates extra code after every
function call to assure the FP
stack is in the expected state.

OFF

-fr32
Itanium-based
systems only

Use only lower 32 floating-point
registers.

OFF

-fshort-enums Allocate as many bytes as
needed for enumerated types.

OFF

-fsource-asm Produce assemblable file with
optional code annotations.
Requires -S.

OFF

-fsyntax-only Same as -syntax. OFF

Intel® C++ Compiler for Linux* Systems User's Guide

16

Option Description Default

-ftz[-]
Itanium-based
systems only

Flushes denormal results to zero.
The option is turned ON with -
O3.

OFF

-funsigned-bitfields Change default bitfield type to
unsigned.

OFF

-funsigned-char Change default char type to
unsigned.

OFF

-fvisibility-default=file Space separated symbols listed
in the file argument will get
visibility set to default.

OFF

-fvisibility-extern=file Space separated symbols listed
in the file argument will get
visibility set to extern.

OFF

-fvisibility-hidden=file Space separated symbols listed
in the file argument will get
visibility set to hidden.

OFF

-fvisibility-internal=file Space separated symbols listed
in the file argument will get
visibility set to internal.

OFF

-fvisibility-protected=file Space separated symbols listed
in the file argument will get
visibility set to protected.

OFF

-fvisibility=
[extern|default|protected
|hidden|internal]

Global symbols (common and
defined data and functions) will
get the visibility attribute given
by default. Symbol visibility
attributes explicitly set in the
source code or using the symbol
visibility attribute file options
will override the -
fvisibility setting.

OFF

-fwritable-strings Ensure that string literals are
placed in a writable data section.

OFF

-g Generates symbolic debugging
information in the object code
for use by source-level
debuggers. The -g option
changes the default optimization
from -O2 to -O0.

OFF

Compiler Options Quick Reference

17

Option Description Default

-gcc-name=name Use this option to specify the
location of g++ when compiler
cannot locate gcc C++ libraries.
For use with -cxxlib-gcc
configuration. Use this option
when referencing a non-standard
gcc installation.

OFF

-gcc-version=nnn This option provides compatible
behavior with gcc, where nnn
indicates the gcc version. This
version of the Intel compiler
supports -gcc-
version=320 (Default).

ON

-H Print "include" file order and
continue compilation.

OFF

-help Prints compiler options
summary.

OFF

-idirafterdir Add directory (dir) to the
second include file search path
(after -I).

OFF

-Idirectory Specifies an additional
directory to search for
include files.

OFF

-i_dynamic Link Intel provided libraries
dynamically.

OFF

-inline_debug_info Preserve the source position of
inlined code instead of assigning
the call-site source position to
inlined code.

OFF

-ip Enables interprocedural
optimizations for single file
compilation.

OFF

-IPF_fma[-]
Itanium-based
systems only

Enable [disable] the combining
of floating-point multiplies and
add/subtract operations.

OFF

-IPF_fltacc[-]
Itanium-based
systems only

Enable [disable] optimizations
that affect floating-point
accuracy.

OFF

-IPF_flt_eval_method0
Itanium-based
systems only

Floating-point operands
evaluated to the precision
indicated by the program.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

18

Option Description Default

-IPF_fp_relaxed
Itanium-based
systems only

Provides significant
performance benefit, but slightly
less precision, when calculating
floating-point divides,
reciprocals, square roots, and
reciprocal square roots. The
results have an error of no more
than 1 ulp (unit-in-the-last-
place) when rounding to nearest
mode is used (but most often
less than 0.5 ulp), and no more
than 1.5 ulp when other
rounding modes are used.

OFF

-IPF_fp_speculationmode
Itanium-based
systems only

Enable floating-point
speculations with the following
mode conditions:

• fast - speculate floating-
point operations

• safe - speculate only
when safe

• strict - same as off

• off - disables speculation
of floating-point
operations

OFF

-ip_no_inlining Disables inlining that would
result from the -ip
interprocedural optimization, but
has no effect on other
interprocedural optimizations.

OFF

-ip_no_pinlining
IA-32 only

Disable partial inlining.
Requires -ip or -ipo.

OFF

-ipo Enables interprocedural
optimizations across files.

OFF

-ipo_c Generates a multifile object file
(ipo_out.o) that can be used
in further link steps.

OFF

-ipo_obj Forces the compiler to create
real object files when used with
-ipo.

OFF

-ipo_S Generates a multifile
assemblable file named
ipo_out.s that can be used in
further link steps.

OFF

Compiler Options Quick Reference

19

Option Description Default

-isystemdir Add directory dir to the start
of the system include path.

OFF

-ivdep_parallel
Itanium-based
systems only

This option indicates there is
absolutely no loop-carried
memory dependency in the loop
where IVDEP directive is
specified.

OFF

-Kc++ Compile all source or
unrecognized file types as C++
source files.

ON

-Knopic, -KNOPIC
Itanium-based
systems only

Deprecated. Use fpic instead
of this option.

ON for Itanium-
based systems
OFF for IA-32

-KPIC, -Kpic Deprecated. Use fpic instead
of this option.

OFF

-Ldirectory Instruct linker to search
directory for libraries.

OFF

-long_double
IA-32 only

Changes the default size of the
long double data type from 64 to
80 bits.

OFF

-M Generates makefile dependency
lines for each source file, based
on the #include lines found
in the source file.

OFF

-march=cpu
IA-32 only

Generate code excusively for a
given cpu. Values for cpu are:

• pentiumpro - Intel
Pentium Pro processors

• pentiumii - Intel
Pentium II processors.

• pentiumiii - Intel
Pentium III processors.

• pentium4 - Intel
Pentium 4 processors.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

20

Option Description Default

-mcpu=cpu Optimize for a specific cpu. For
IA-32, cpu values are:

• pentium - Optimize for
Pentium processor.

• pentiumpro - Optimize
for Pentium Pro, Pentium
II and Pentium III
processors.

• pentium4 - Optimize
for Pentium 4 processor
(Default).

For Itanium-based Systems,
cpu values are:

• itanium - Optimize for
Itanium processor.

• itanium2 - Optimize
for Itanium 2 processor
(Default).

ON
pentium
on IA-32

itanium2
on Itanium-based
Systems

-MD Preprocess and compile.
Generate output file (.d
extension) containing
dependency information.

OFF

-MFfile Generate makefile dependency
information in file. Must
specify -M or -MM.

OFF

-MG Similar to -M, but treats missing
header files as generated files.

OFF

-MM Similar to -M, but does not
include system header files.

OFF

-MMD Similar to -MD, but does not
include system header files.

OFF

-mp Favors conformance to the
ANSI C and IEEE 754 standards
for floating-point arithmetic.

OFF

-mp1 Improve floating-point precision
(speed impact is less than -mp).

OFF

-mrelax
Itanium-based
systems only

Pass -relax to the linker. ON

-mno-relax
Itanium-based
systems only

Do not pass -relax to the
linker.

OFF

Compiler Options Quick Reference

21

Option Description Default

-mserialize-volatile
Itanium-based
systems only

Impose strict memory access
ordering for volatile data object
references.

OFF

-mno-serialize-volatile
Itanium-based
systems only

The compiler may suppress both
run-time and compile-time
memory access ordering for
volatile data object references.
Specifically, the .rel/.acq
completers will not be issued on
referencing loads and stores.

OFF

-MX Generate dependency file
(.o.dep extension) containing
information used for the Intel
wb tool.

OFF

-nobss_init Places variables that are
initialized with zeroes in the
DATA section. Disables
placement of zero-initialized
variables in BSS (use DATA).

OFF

-no_cpprt Do not link in C++ run-time
libraries.

OFF

-nodefaultlibs Do not use standard libraries
when linking.

-no-gcc Do not predefine the
__GNUC__,
__GNUC_MINOR__, and
__GNUC_PATCHLEVEL__
macros.

OFF

-nolib_inline Disables inline expansion of
standard library functions.

OFF

-nostartfiles Do not use standard startup files
when linking.

OFF

-nostdinc Same as -X. OFF

-nostdlib Do not use standard libraries and
startup files when linking.

OFF

-O Same as -O1 on IA-32. Same as
-O2 on Itanium-based systems.

OFF

-O0 Disables optimizations. OFF

-O1 Enable optimizations. Optimizes
for speed. For Itanium compiler,
-O1 turns off software
pipelining to reduce code size.

ON

Intel® C++ Compiler for Linux* Systems User's Guide

22

Option Description Default

-O2 Same as -O1 on IA-32. Same as
-O on Itanium-based systems.

OFF

-O3 Enable -O2 plus more
aggressive optimizations that
may increase the compilation
time. Impact on performance is
application dependent, some
applications may not see a
performance improvement.

OFF

-Obn Controls the compiler's inline
expansion. The amount of inline
expansion performed varies with
the value of n as follows:

• 0: Disables inlining.

• 1: Enables (default)
inlining of functions
declared with the
__inline keyword.
Also enables inlining
according to the C++
language.

• 2: Enables inlining of any
function. However, the
compiler decides which
functions to inline.
Enables interprocedural
optimizations and has the
same effect as -ip.

ON

-ofile Name output file. OFF

-openmp Enables the parallelizer to
generate multi-threaded code
based on the OpenMP*
directives. The -openmp option
works with both -O0 and any
optimization level of -O1, -O2,
and -O3.

OFF

-openmp_report{0|1|2} Controls the OpenMP
parallelizer's diagnostic levels.

ON
-
openmp_report1

-openmp_stubs Enables OpenMP programs to
compile in sequential mode. The
OpenMP directives are ignored
and a stub OpenMP library is
linked sequentially.

OFF

Compiler Options Quick Reference

23

Option Description Default

-opt_report Generates an optimization report
directed to stderr, unless -
opt_report_file is
specified.

OFF

-opt_report_filefilename Specifies the filename for the
optimization report. It is not
necessary to invoke -
opt_report when this option
is specified.

OFF

-opt_report_levellevel Specifies the verbosity level
of the output. Valid level
arguments:

• min

• med

• max

If a level is not specified,
min is used by default.

OFF

-opt_report_phasename Specifies the compilation name
for which reports are generated.
The option can be used multiple
times in the same compilation to
get output from multiple phases.
Valid name arguments:

• ipo: Interprocedural
Optimizer

• hlo: High Level
Optimizer

• ilo: Intermediate
Language Scalar
Optimizer

• ecg: Code Generator

• omp: OpenMP*

• all: All phases

OFF

-opt_report_routinesubstring Specifies a routine
substring. Reports from all
routines with names that include
substring as part of the
name are generated. By default,
reports for all routines are
generated.

OFF

-opt_report_help Displays all possible settings for
-opt_report_phase. No
compilation is performed.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

24

Option Description Default

-p Same as -qp. OFF

-P, -F Stops the compilation process
after C or C++ source files have
been preprocessed and writes
the results to files named
according to the compiler's
default file-naming conventions.

OFF

-parallel Detects parallel loops capable of
being executed safely in parallel
and automatically generates
multithreaded code for these
loops.

OFF

-par_report{0|1|2|3} Controls the auto-parallelizer's
diagnostic levels 0, 1, 2, or 3 as
follows:

• -par_report0: no
diagnostic information is
displayed.

• -par_report1:
indicates loops
successfully auto-
parallelized (default).

• -par_report2: loops
successfully and
unsccessfully auto-
parallelized.

• -par_report3: same
as 2 plus additional
information about any
proven or assumed
dependences inhibiting
auto-parallelization.

OFF

Compiler Options Quick Reference

25

Option Description Default

-par_threshold[n] Sets a threshold for the auto-
parallelization of loops based on
the probability of profitable
execution of the loop in parallel,
n=0 to 100. This option is used
for loops whose computation
work volume cannot be
determined at compile time.

• -par_threshold0:
loops get auto-parallelized
regardless of computation
work volume.

• -par_threshold100:
loops get auto-parallelized
only if profitable parallel
execution is almost
certain.

OFF

-pc32
IA-32 only

Set internal FPU precision to 24-
bit significand.

OFF

-pc64
IA-32 only

Set internal FPU precision to 53-
bit significand.

OFF

-pc80
IA-32 only

Set internal FPU precision to 64-
bit significand.

ON

-pch Automatic processing for
precompiled headers.

OFF

-pch_dir dirname Directs the compiler to find
and/or create a file for
precompiled headers in
dirname.

OFF

-prec_div
IA-32 only

Disables the floating point
division-to-multiplication
optimization. Improves
precision of floating-point
divides.

OFF

-prefetch[-] Enables [disables] the insertion
of software prefetching by the
compiler. Default is -
prefetch.

ON

-prof_dir dirname Specify the directory
(dirname) to hold profile
information (*.dyn, *.dpi).

OFF

-prof_file filename Specify the filename for
profiling summary file.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

26

Option Description Default

-prof_format_32 By default, the Intel compiler
creates 64-bit profiling counters
(.dyn and .dpi). This option
creates 32-bit counters for
compatibility with the Intel C++
Compiler 7.0.

OFF

-prof_gen[x] Instruments the program to
prepare for instrumented
execution and also creates a new
static profile information file
(.spi). With the x qualifier,
extra source position is collected
which enables code coverage
tools.

OFF

-prof_use Uses dynamic feedback
information.

OFF

-Qinstall dir Sets dir as root of compiler
installation.

OFF

-Qlocation,tool,path Sets path as the location of the
tool specified by tool .

OFF

-Qoption,tool,list Passes an argument list to
another tool in the
compilation sequence, such as
the assembler or linker.

OFF

-qp Compile and link for function
profiling with UNIX* prof
tool

OFF

-rcd
IA-32 only

Disables changing of the FPU
rounding control. Enables fast
float-to-int conversions.

OFF

-S Generates assemblable files with
.s suffix, then stops the
compilation.

OFF

-shared Produce a shared object. OFF

-shared-libcxa Link Intel libcxa C++ library
dynamically.

ON

-sox[-]
IA-32 only

Enables [disables] the saving of
compiler options and version
information in the executable
file.

-sox-

-static Prevents linking with shared
libraries.

OFF

Compiler Options Quick Reference

27

Option Description Default

-static-libcxa Link Intel libcxa C++ library
statically.

OFF

-std=c99 Enable C99 support for C
programs.

ON

-strict_ansi Strict ANSI conformance
dialect.

OFF

-syntax Checks the syntax of a program
and stops the compilation
process after the C or C++
source files and preprocessed
source files have been parsed.
Generates no code and produces
no output files. Warnings and
messages appear on stderr.

OFF

-T file Direct linker to read link
commands from file.

OFF

-tpp1
Itanium-based
systems only

Targets optimization for the
Itanium processor.

OFF

-tpp2
Itanium-based
systems only

Targets optimization for the
Itanium® 2 processor.
Generated code is compatible
with the Itanium processor.

ON

-tpp5
IA-32 only

Targets the optimizations for the
Pentium processor.

OFF

-tpp6
IA-32 only

Targets the optimizations for the
Pentium Pro, Pentium II and
Pentium III processors.

OFF

-tpp7
IA-32 only

Targets optimizations for the
Intel Pentium 4 processors.

ON

-Uname Suppresses any definition of a
macro name. Equivalent to a
#undef preprocessing
directive.

OFF

-unroll0 Disable loop unrolling. OFF

-unroll 0 Disable loop unrolling. OFF

-use_asm Produce objects through
assembler.

OFF

-use_msasm
IA-32 only

Accept the Microsoft* MASM-
style inlined assembly format
instead of GNU-style.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

28

Option Description Default

-use_pch filename Manual use of precompiled
header (filename.pchi).

OFF

-u symbol Pretend the symbol is
undefined.

OFF

-V Display compiler version
information.

OFF

-v Show driver tool commands and
execute tools.

-vec_report[n]
IA-32 only

Controls the amount of
vectorizer diagnostic
information.

• n = 0 no diagnostic
information

• n = 1 indicates vectorized
loops (DEFAULT)

• n = 2 indicates
vectorized/non-vectorized
loops

• n = 3 indicates
vectorized/non-vectorized
loops and prohibiting data
dependence information

• n = 4 indicates non-
vectorized loops

• n = 5 indicates non-
vectorized loops and
prohibiting data

ON
-vec_report1

-w Disable all warnings. OFF

-Wall Enable all warnings. OFF

-Wbrief Enable a mode in which a
shorter form of the diagnostic
output is used. When enabled,
the original source line is not
displayed and the error message
text is not wrapped when too
long to fit on a single line.

OFF

Compiler Options Quick Reference

29

Option Description Default

-Wcheck Performs compile-time code
checking for code that exhibits
non-portable behavior,
represents a possible unintended
code sequence, or possibly
affects operation of the program
because of a quiet change in the
ANSI C Standard.

OFF

-wn Control diagnostics.
• n = 0 displays errors

(same as -w)

• n = 1 displays warnings
and errors (DEFAULT)

• n = 2 displays remarks,
warnings, and errors

ON
-w1

-wdL1[,L2,...] Disables diagnostics L1 through
LN.

OFF

-weL1[,L2,...] Changes severity of diagnostics
L1 through LN to error.

OFF

-Werror Force warnings to be reported as
errors.

OFF

-wnn Limits the number of errors
displayed prior to aborting
compilation to n.

ON
-wn100

-wrL1[,L2,...] Changes the severity of
diagnostics L1 through LN to
remark.

OFF

-wwL1[,L2,...] Changes severity of diagnostics
L1 through LN to warning.

OFF

-Wl,o1[,o2,...] Pass options o1, o2, etc. to the
linker for processing.

OFF

-Wp64
Itanium-based
systems only

Print diagnostics for 64-bit
porting.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

30

Option Description Default

-xtype All source files found
subsequent to -xtype will be
recognized as one of the
following types:

• c - C source file

• c++ - C++ source file

• c-header - C header
file

• cpp-output - C
preprocessed file

• assembler -
assemblable file

• assembler-with-
cpp - Assemblable file
that needs to be
preprocessed.

• none - Disable
recognition and revert to
file extension.

OFF

-X Removes the standard
directories from the list of
directories to be searched for
include files.

OFF

-x{K|W|N|B|P}
IA-32 only

Generates specialized code for
processor-specific codes K, W, N,
B, and P.

• K = Intel Pentium III and
compatible Intel
processors

• W = Intel Pentium 4 and
compatible Intel
processors

• N = Intel Pentium 4 and
compatible Intel
processors

• B = Intel Pentium M and
compatible Intel
processors

• P = Intel Pentium 4
processor with Streaming
SIMD Extensions 3
(SSE3)

OFF

Compiler Options Quick Reference

31

Option Description Default

-Xlinker val Pass val directly to the linker
for processing.

OFF

-Zp{1|2|4|8|16} Packs structures on 1, 2, 4, 8, or
16 byte boundaries.

ON
-Zp16

Compiler Options Cross Reference
Linux* Windows* Description Linux

Default

-A- /QA- Remove all
predefined macros.

OFF

-Aname[(val)] /QAname[(val)] Create an assertion
name having value
val.

OFF

-ansi /Za Enable/disable
assumption of ANSI
conformance.

ON

Intel® C++ Compiler for Linux* Systems User's Guide

32

Linux* Windows* Description Linux
Default

-ax{K|W|N|B|P} /Qax{K|W|N|B|P} Generates specialized
code for processor-
specific codes K, W, N,
B, and P while also
generating generic
IA-32 code.

• K = Intel®
Pentium® III
and compatible
Intel processors

• W = Intel
Pentium 4 and
compatible
Intel processors

• N = Intel
Pentium 4 and
compatible
Intel processors

• B = Intel
Pentium M and
compatible
Intel processors

• P = Intel
Pentium 4
processor with
Streaming
SIMD
Extensions 3
(SSE3)

OFF

-C /C Don't strip comments. OFF

-c /c Compile to object
(.o) only, do not link.

OFF

-Dname[=value] /Dname[=value] Define macro. OFF

-E /E Preprocess to stdout. OFF

-fp /Oy- Use EBP-based stack
frame for all
functions.

OFF

-g /Zi Produce symbolic
debug information in
object file. The -g
option changes the
default optimization
from -O2 to -O0.

OFF

Compiler Options Quick Reference

33

Linux* Windows* Description Linux
Default

-H /QH Print include file
order.

OFF

-help /help Print help message
listing.

OFF

-Idirectory /Idirectory Add directory to
include file search
path.

OFF

-inline_debug_info /Qinline_debug_info Preserve the source
position of inlined
code instead of
assigning the call-site
source position to
inlined code.

OFF

-ip /Qip Enable single-file IP
optimizations (within
files).

OFF

-ip_no_inlining /Qip_no_inlining Optimize the behavior
of IP: disable full and
partial inlining
(requires -ip or -
ipo).

OFF

-ipo /Qipo Enable multifile IP
optimizations
(between files).

OFF

-ipo_obj /Qipo_obj Optimize the behavior
of IP: force
generation of real
object files (requires
-ipo).

OFF

-KPIC NA Generate position
independent code
(same as -Kpic).

OFF

-Kpic NA Generate position
independent code
(same as -KPIC).

OFF

-long_double /Qlong_double Enable 80-bit long
double.

OFF

-m NA Instruct linker to
produce map file.

OFF

-M /QM Generate makefile
dependency
information.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

34

Linux* Windows* Description Linux
Default

-mp /Op[-] Maintain floating-
point precision
(disables some
optimizations).

OFF

-mp1 /Qprec Improve floating-
point precision (speed
impact is less than -
mp).

OFF

-nobss_init /Qnobss_init Disable placement of
zero-initialized
variables in BSS (use
DATA).

OFF

-nolib_inline /Oi[-] Disable inline
expansion of intrinsic
functions.

OFF

-O /O2 OFF

-ofile /Fefile or /Fofile Name output file. OFF

-O0 /Od Disable optimizations. OFF

-O1 /O1 Optimizes for speed. OFF

-O2 /O2 ON

-P /EP Preprocess to file. OFF

-pc32 /Qpc 32 Set internal FPU
precision to 24-bit
significand.

OFF

-pc64 /Qpc 64 Set internal FPU
precision to 53-bit
significand.

OFF

-pc80 /Qpc 80 Set internal FPU
precision to 64-bit
significand.

ON

-prec_div /Qprec_div Improve precision of
floating-point divides
(some speed impact).

OFF

-prof_dirdirectory /Qprof_dirdirectory Specify directory for
profiling output files
(*.dyn and *.dpi).

OFF

-prof_filefilename /Qprof_filefilename Specify file name for
profiling summary
file.

OFF

Compiler Options Quick Reference

35

Linux* Windows* Description Linux
Default

-prof_gen[x] /Qprof_genx Instrument program
for profiling; with the
x qualifier, extra
information is
gathered.

OFF

-prof_use /Qprof_use Enable use of
profiling information
during optimization.

OFF

-Qinstall dir NA Set dir as root of
compiler installation.

OFF

-Qlocation,str,dir /Qlocation,tool,path Set dir as the
location of tool
specified by str.

OFF

-Qoption,str,opts /Qoption,tool,list Pass options opts to
tool specified by str.

OFF

-qp, -p NA Compile and link for
function profiling
with UNIX* gprof
tool.

OFF

-rcd /Qrcd Enable fast floating-
point-to-integer
conversions.

OFF

-restrict /Qrestrict Enable the restrict
keyword for
disambiguating
pointers.

OFF

-S /S Generates
assemblable files with
.s suffix, then stops
the compilation.

OFF

-sox[-] /Qsox Enable [disable]
saving of compiler
options and version in
the executable.

-sox-

-syntax /Zs Perform syntax check
only.

OFF

-tpp5 /G5 Optimize for Pentium
processor.

OFF

-tpp6 /G6 Optimize for Pentium
Pro, Pentium II and
Pentium III
processors.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

36

Linux* Windows* Description Linux
Default

-tpp7 /G7 Optimize for Pentium
4 processor.

OFF

-Uname /Uname Remove predefined
macro.

OFF

-unroll0 /Qunroll0 Disable loop
unrolling.

OFF

-V /QV Display compiler
version information.

OFF

-w /w Display errors. OFF

-w2 /W4 Enable remarks,
warnings and errors.

-Wbrief /WL Produces less verbose
diagnostics.

OFF

-wn /Wn Control diagnostics.
Display errors (n=0).
Display warnings and
errors (n=1). Display
remarks, warnings,
and errors (n=2).

OFF

-wdL1[,L2,...] /Qwd[tag] Disable diagnostics
L1 through LN.

OFF

-weL1[,L2,...] /Qwe[tag] Change severity of
diagnostics L1
through LN to error.

OFF

-wnn /Qwn[tag] Print a maximum of n
errors.

OFF

-Wp64 /Wp64 Print diagnostics for
64-bit porting.

OFF

-wrL1[,L2,...] /Qwr[tag] Change severity of
diagnostics L1
through LN to
remark.

OFF

-wwL1[,L2,...] /Qww[tag] Change severity of
diagnostics L1
through LN to
warning.

OFF

-X /X Remove standard
directories from
include file search
path.

OFF

Compiler Options Quick Reference

37

Linux* Windows* Description Linux
Default

-x{K|W|N|B|P} /Qx{K|W|N|B|P} Generates specialized
code for processor-
specific codes K, W, N,
B, and P.

• K = Intel
Pentium III and
compatible
Intel processors

• W = Intel
Pentium 4 and
compatible
Intel processors

• N = Intel
Pentium 4 and
compatible
Intel processors

• B = Intel
Pentium M and
compatible
Intel processors

• P = Intel
Pentium 4
processor with
Streaming
SIMD
Extensions 3
(SSE3)

OFF

-Zp{1|2|4|8|16} /Zp[n] Packs structures on 1,
2, 4, 8, or 16 byte
boundaries.

OFF

Default Compiler Options
• Options specific to IA-32 architecture

• Options specific to the Itanium® architecture

• Options supported on both IA-32 and Itanium-based systems.

Option Description

-c99 Enables C99 support for C programs

-falias Assume aliasing in program.

-ffnalias Assume aliasing within functions

Intel® C++ Compiler for Linux* Systems User's Guide

38

Option Description

-gcc-version=320 This option provides compatible behavior with gcc, where nnn
indicates the gcc version. This version of the Intel compiler supports
-gcc-version=320 (Default).

-mcpu=pentium4 Optimizes for Intel® Pentium® 4 processor (IA-32 systems only).

-mcpu=itanium2 Optimizes for Intel® Itanium® 2 processor (Itanium-based systems
only)

-O2 Same as -O1 on IA-32. Same as -O on Itanium-based systems.

-Ob1 Enables inlining of functions declared with the __inline
keyword. Also enables inlining according to the C++ language.

-pc80
IA-32 only

Set internal FPU precision to 64-bit significand.

-prefetch Enables the insertion of software prefetching by the compiler.

-sox-
IA-32 only

Disables the saving of compiler options and version information in
the executable file.

-std=c99 Enable C99 support for C programs.

-tpp2
Itanium-based
systems only

Target optimization to the Intel Itanium 2 processor. Generated code
is compatible with the Intel Itanium processor.

-tpp7
IA-32 only

Targets optimizations for the Intel Pentium 4 processors.

-w1 Control diagnostics. Displays warnings and errors.

-Zp16 Packs structures on 16 byte boundaries.

39

Building and Debugging Applications
Getting Started
Default Behavior of the Compiler

If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses
the following default settings:

• Produces executable output with filename a.out.

• Invokes options specified in a configuration file first. See Configuration Files.

• The location of shared objects is specified by the LD_LIBRARY_PATH environment
variable.

• Sets 8 bytes as the strictest alignment constraint for structures.

• Displays error and warning messages.

• Performs standard optimizations using the default -O2 option. See Setting Optimization
Levels.

• On operating systems that support characters in Unicode* (multi-byte) format, the compiler
will process file names containing these characters.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

Compilation Phases
To produce an executable file, the compiler performs by default the compile and link phases.
When invoked, the compiler driver determines which compilation phases to perform based on the
file name extension and the compilation options specified in the command line.

The compiler passes object files and any unrecognized file name to the linker. The linker then
determines whether the file is an object file (.o) or a library (.a). The compiler driver handles all
types of input files correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in the
diagram below:

Intel® C++ Compiler for Linux* Systems User's Guide

40

Application Development Cycle

Building Applications from the Command Line
Invoking the Compiler

The ways to invoke Intel® C++ Compiler are as follows:

• Invoke directly: Running Compiler from the Command Line

• Use system make file: Running from the Command Line with make

Invoking the Compiler from the Command Line
There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. set the environment

2. invoke the compiler using icc or icpc

Building and Debugging Applications

41

Set the Environment Variables
Before you can operate the compiler, you must set the environment variables to specify locations
for the various components. The Intel C++ Compiler installation includes shell scripts that you can
use to set environment variables. With the default compiler installation, these scripts are:

• /opt/intel_cc_80/bin/iccvars.sh

• /opt/intel_cc_80/bin/iccvars.csh

To run an environment script, enter one of the following on the command line:
prompt>source /opt/intel_cc_80/bin/iccvars.sh

or

prompt>source /opt/intel_cc_80/bin/iccvars.csh

If you want the script to run automatically when you start Linux*, add the same command to the
end of your startup file.

Sample .bash_profile entry for iccvars.sh:

set environment vars for Intel C++ compiler
source /opt/intel_cc_80/bin/iccvars.sh

Invoking the Compiler with icc or icpc
You can invoke the Intel C++ Compiler on the command line with either icc or icpc. Each
invocation includes the C++ run-time libraries and header files. Use the -no_cpprt option if
you do not want the C++ run-time libraries and headers.

Command-line Syntax
When you invoke the Intel C++ Compiler with icc or icpc, use the following syntax:

prompt>{icc|icpc} [options] file1 [file2 . . .] [linker options]

Argument Description

options Indicates one or more command-line options. The compiler recognizes
one or more letters preceded by a hyphen (-). See the Options Quick
Reference

file1, file2
. . .

Indicates one or more files to be processed by the compilation system.
You can specify more than one file. Use a space as a delimiter for
multiple files.

linker
options

Indicates options directed to the linker.

Example:
prompt>icpc -prec_div -axW my_source1.cpp my_source2.cpp -Bstatic

Intel® C++ Compiler for Linux* Systems User's Guide

42

Invoking the Compiler from the Command Line with make
To run make from the command line using Intel® C++ Compiler, make sure that /usr/bin is
in your path. If you use a C shell, you can edit your .cshrc file and add:

setenv PATH /usr/bin:<full path to Intel compiler>

 Note

To use the Intel compiler, your makefile must include the setting CC=icc. Use the same setting
on the command line to instruct the makefile to use the Intel compiler. If your makefile is written
for gcc, the GNU* C compiler, you will need to change those command line options not
recognized by the Intel compiler.

Then you can compile:

prompt>make -f my_makefile

Compiler Input Files
The Intel® C++ Compiler recognizes the file name extensions listed in the table below:

Filename Interpretation

filename.a Object library

filename.i When you invoke the compiler with icc, the .i files are treated as C
source files. The .i files are treated as C++ sources if you compile with
icpc.

filename.o Compiled object module

filename.s Assembly file

filename.so Shared object file

filename.S Assembly file that requires preprocessing

filename.c C language source file

filename.C
filename.cc
filename.CC
filename.cpp
filename.cxx

C++ language source file

Building and Debugging Applications

43

Compilation Options
This section describes the Intel® C++ Compiler options that determine the compilation process
and output. By default, the compiler converts source code directly to an executable file.
Appropriate options allow you to control the process by directing the compiler to produce:

• Preprocessed files (.i) with the -P option.

• Assembly files (.s) with the -S option.

• Object files (.o) with the -c option.

• Executable files (.out) by default.

You can also name the output file or designate a set of options that are passed to the linker. If you
specify a phase-limiting option, the compiler produces a separate output file representing the
output of the last phase that completes for each primary input file.

Preprocessor Options
This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file
inclusion.

Preprocessing Options
Option Description

-
Aname[(values,...)]

Associates a symbol name with the specified sequence of
values . Equivalent to an #assert preprocessing directive.

-A- Causes all predefined macros and assertions to be inactive.

-C Preserves comments in preprocessed source output.

-Dname[(value)] Defines the macro name and associates it with the specified
value . The default (-Dname) defines a macro with a
value of 1.

-E Directs the preprocessor to expand your source module and
write the result to standard output.

-EP Directs the preprocessor to expand your source module and
write the result to standard output. Does not include #line
directives in the output.

-P Directs the preprocessor to expand your source module and
store the result in a .i file in the current directory.

-Uname Suppresses any automatic definition for the specified macro
name .

Intel® C++ Compiler for Linux* Systems User's Guide

44

Preprocessing Only
Use the -E, -P or -EP option to preprocess your source files without compiling them. When
using these options, only the preprocessing phase of compilation is activated.

Using -E
When you specify the -E option, the compiler's preprocessor expands your source module and
writes the result to stdout. The preprocessed source contains #line directives, which the
compiler uses to determine the source file and line number. For example, to preprocess two source
files and write them to stdout, enter the following command:

prompt>icpc -E prog1.cpp prog2.cpp

Using -P
When you specify the -P option, the preprocessor expands your source module and directs the
output to a .i file instead of stdout. Unlike the -E option, the output from -P does not include
#line number directives. By default, the preprocessor creates the name of the output file using
the prefix of the source file name with a .i extension. You can change this by using the -ofile
 option. For example, the following command creates two files named prog1.i and prog2.i,
which you can use as input to another compilation:

prompt>icpc -P prog1.cpp prog2.cpp

 Caution

When you use the -P option, any existing files with the same name and extension are overwritten.

Using -EP
Using the -EP option directs the preprocessor to not include #line directives in the output. -EP
is equivalent to -E -P.

prompt>icpc -EP prog1.cpp prog2.cpp

Preserving Comments in Preprocessed Source Output

Use the -C option to preserve comments in your preprocessed source output. Comments following
preprocessing directives, however, are not preserved.

Preprocessing Directive Equivalents
You can use the -A, -D, and -U options as equivalents to preprocessing directives:

• -A is equivalent to a #assert preprocessing directive

• -D is equivalent to a #define preprocessing directive

• -U is equivalent to a #undef preprocessing directive

Using -A
Use the -A option to make an assertion. Syntax: -Aname[(value)].

Argument Description

name Indicates an identifier for the assertion

value Indicates a value for the assertion. If a value is specified, it should be
quoted, along with the parentheses delimiting it.

Building and Debugging Applications

45

For example, to make an assertion for the identifier fruit with the associated values orange
and banana use the following command:

prompt>icpc -A"fruit(orange,banana)" prog1.cpp

Using -D
Use the -D option to define a macro. Syntax: -Dname[=value].

Argument Description

name The name of the macro to define.

value Indicates a value to be substituted for name. If you do not enter a value, name is
set to 1. The value should be quoted if it contains non-alphanumerics.

For example, to define a macro called SIZE with the value 100 use the following command:

prompt>icpc -DSIZE=100 prog1.cpp

The -D option can also be used to define functions. For example:

prompt>icpc -D"f(x)=x" prog1.cpp

Using -U
Use the -U option to remove (undefine) a pre-defined macro. Syntax: -Uname.

Argument Description

name The name of the macro to undefine.

 Note

If you use -D and -U in the same compilation, the compiler processes the -D option before -U,
rather than processing them in the order they appear on the command line.

Intel® C++ Compiler for Linux* Systems User's Guide

46

Predefined Macros
The predefined macros available for the Intel® C++ Compiler are described in the table below.
The Architecture column indicates which Intel architecture supports the macro.

Predefined macros specified by the ISO/ANSI standard are not listed in the table. For a list of all
macro definitions in effect, use the -E -dM options. For example:
prompt>icpc -E -dM prog1.cpp

Macro Name Value Architecture

__DATE__ Current date Both

__ECC 1 Itanium® architecture only

__EDG__ 1 Both

__EDG_VERSION__ 302 Both

__ELF__ 1 Both

__extension__ (no value) Both

__gnu_linux__ 1 Both

__GNUC__ 3 Both

__GNUC_MINOR__ 2 Both

__GNUC_PATCHLEVEL__ 0 Both

__GXX_ABI_VERSION 102 Both

__HONOR_STD 1 IA-32 only

__i386 1 IA-32 only

__i386__ 1 IA-32 only

i386 1 IA-32 only

__ia64 1 Itanium architecture only

__ia64__ 1 Itanium architecture only

ia64 1 Itanium architecture only

__ICC 800 IA-32 only

Building and Debugging Applications

47

Macro Name Value Architecture

__INTEL_COMPILER 800 Both

_INTEGRAL_MAX_BITS 64 Itanium architecture only

__itanium__ 1 Itanium architecture only

__linux 1 Both

__linux__ 1 Both

linux 1 Both

__LONG_DOUBLE_SIZE__ 80 IA-32 only

__lp64 1 Itanium architecture only

__LP64__ 1 Itanium architecture only

_LP64 1 Itanium architecture only

__NO_INLINE__ 1 Both

__NO_MATH_INLINES 1 Both

__NO_STRING_INLINES 1 Both

__OPTIMIZE__ 1 Both

_PGO_INSTRUMENT 1 Both

__PTRDIFF_TYPE__ int
on IA-32
long
on Itanium
architecture

Both

__QMSPP_ 1 IA-32 only

__REGISTER_PREFIX__ (no value) Both

__SIGNED_CHARS__ 1 Both

__SIZE_TYPE__ unsigned
on IA-32
unsigned long
on Itanium
architecture

Both

__STDC__ 1 Both

Intel® C++ Compiler for Linux* Systems User's Guide

48

Macro Name Value Architecture

__STDC_HOSTED__ 1 Both

__TIME__ Current time Both

__unix 1 Both

__unix__ 1 Both

unix 1 Both

__USER_LABEL_PREFIX__ (no value) Both

__VERSION__ Both

__WCHAR_TYPE__ long int
on IA-32
int
on Itanium
architecture

Both

__WINT_TYPE__ unsigned int Both

Suppress Macro Definition
Use the -Uname option to suppress any macro definition currently in effect for the specified
name. The -U option performs the same function as an #undef preprocessor directive.

Compilation Environment
Customizing the Compilation Environment

For IA-32 and the Intel® Itanium® architecture, you will need to set a compilation environment.
To customize the environment used during compilation, you can specify:

• Environment Variables -- the paths where the compiler and other tools can search for
specific files.

• Configuration Files -- the options to use with each compilation.

• Response Files -- the options and files to use for individual projects.

• Include Files -- the names and locations of source header files.

Environment Variables
You can customize your environment by specifying paths where the compiler can search for
special files such as libraries and include files.

• LD_LIBRARY_PATH specifies the location for shared objects.

• PATH specifies the directories the system searches for binary executable files.

• ICCCFG specifies the configuration file for customizing compilations when invoking the
compiler using icc.

• ICPCCFG specifies the configuration file for customizing compilations when invoking the
compiler using icpc.

• Several environment variables are supported to specify the location for temporary files. The
compiler searches for the following variables in the order specified: TMP, TMPDIR, and
TEMP. If none of these variables are found, temporary files are stored in /tmp.

Building and Debugging Applications

49

• IA32ROOT (IA32-based systems) points to the directory containing the bin, lib,
include and substitute header directories.

• IA64ROOT (Itanium®-based systems) points to the directory containing the bin, lib,
include and substitute header directories.

GNU* Environment Variables

The Intel C++ Compiler supports the following GNU environment variables:

• CPATH - Path to include directory for C/C++ compilations

• C_INCLUDE_PATH - Path include directory for C compilations

• CPLUS_INCLUDE_PATH - Path include directory for C++ compilations.

• LIBRARY_PATH - The value of LIBRARY_PATH is a colon-separated list of directories,
much like PATH.

• DEPENDENCIES_OUTPUT - If this variable is set, its value specifies how to output
dependencies for Make based on the non-system header files processed by the compiler.
System header files are ignored in the dependency output.

• SUNPRO_DEPENDENCIES - This variable is the same as DEPENDENCIES_OUTPUT,
except that system header files are not ignored.

Compilation Environment Options

The Intel® C++ Compiler installation includes shell scripts that you can use to set environment
variables. See Invoking the Compiler from the Command Line for more information.

Configuration Files
You can decrease the time you spend entering command-line options and ensure consistency by
using the configuration file to automate often-used command-line entries. You can insert any valid
command-line option into the configuration file. The compiler processes options in the
configuration file in the order they appear followed by the command-line options that you specify
when you invoke the compiler.

 Note

Options in the configuration file will be executed every time you run the compiler. If you have
varying option requirements for different projects, see Response Files.

How to Use Configuration Files

The following example illustrates a basic configuration file. After you have written the .cfg file,
simply ensure it is in the same directory as the compiler's executable file when you run the
compiler. The text following the pound (#) character is recognized as a comment. The
configuration file is icc.cfg.

Sample configuration file.
Define preprocessor macro MY_PROJECT.

-DMY_PROJECT

Additional directories to be searched
for INCLUDE files, before the default.

-I /project/include

Intel® C++ Compiler for Linux* Systems User's Guide

50

Specifying the Location with ICCCFG

You can use the ICCCFG environment variable to specify the location of your configuration file:

ICCCFG=/cpp/config/my_options.cfg

Each time you invoke the compiler with icc, my_options.cfg is used as your configuration
file. The ICPCCFG environment variable is supported for invoking the compiler with icpc.

See Environment Variables.

Response Files
Use response files to specify options used during particular compilations. Response files are
invoked as an option on the command line. Options in a response file are inserted in the command
line at the point where the response file is invoked.

Sample Response Files

response file: response1.txt
compile with these options

-axW
-pch

end of response1 file

response file: response2.txt
compile with these options

-mp1
-strict_ansi

end of response2 file

Use response files to decrease the time spent entering command-line options and to ensure
consistency by automating command-line entries. Use individual response files to maintain
options for specific projects to avoid editing the configuration file when changing projects.

Any number of options or file names can be placed on a line in the response file. Several response
files can be referenced in the same command line.

The syntax for using response files is as follows:
prompt>icpc @response1.txt source1.cpp @response2.txt source2.cpp

 Note

An "at" sign (@) must precede the name of the response file on the command line.

Include Files
Include directories are searched in the default system areas and whatever is specified by the -
Idirectory option. For multiple search directories, multiple -Idirectory commands must
be used. The compiler searches directories for include files in the following order:

• directory of the source file that contains the include

• directories specified by the -I option

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default system areas. You can use
the -X option with the -I option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

Building and Debugging Applications

51

For example, to direct the compiler to search the path /alt/include instead of the default
path, do the following:

prompt>icpc -X -I/alt/include prog.cpp

See also Searching for Include Files.

Searching for Include Files
By default, the compiler searches for the standard include files in the directories specified in the
CPATH, C_INCLUDE_PATH, and CPLUS_INCLUDE_PATH environment variables. You can
indicate the location of include files in the configuration file.

How to Specify an Include Directory

Use the -Idirectory option to specify an additional directory in which to search for include
files. For multiple search directories, multiple -Idirectory commands must be used. Included
files are brought into the program with a #include preprocessor directive. The compiler
searches directories for include files in the following order:

• directory of the source file that contains the include

• directories specified by the -I option

• directories specified in the CPATH, C_INCLUDE_PATH, and CPLUS_INCLUDE_PATH
environment variables

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default path specified by the
environment variables.

You can use the -X option with the -I option to prevent the compiler from searching the default
path for include files and direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default
path, do the following:

prompt>icpc -X -I/alt/include source.cpp

Controlling Compilation
If no errors occur during processing, you can use the output files from a particular phase as input
to a subsequent compiler invocation. The table below describes the options to control the output:

Option Input Output

-P • Source files Preprocessed files (.i files).

-E • Source files Preprocesses source file and directs output to stdout.

-EP • Source files Preprocesses source file, directs output to stdout, and
omits line numbers.

-c • Source files

• Preprocessed
files

Compile to object only (.o), do not link.

Intel® C++ Compiler for Linux* Systems User's Guide

52

Option Input Output

-S • Source files

• Preprocessed
files

Generate assemblable files with .s suffix and stops the
compilation process.

-syntax • Source files

• Preprocessed
files

Emits diagnostic list of syntax errors to sdtout. There is
no output for source files free of syntax errors.

(Default) • Source files

• Preprocessed
files

• Assemblable
files

• Object files

• Libraries

Executable file (.out files).

Controlling Compilation Flow
Option Description

-c Stops the compilation process after an object file has been generated.
The compiler generates an object file for each C or C++ source file or
preprocessed source file. Also takes an assembler file and invokes the
assembler to generate an object file.

-Kpic, -KPIC Generate position-independent code.

-lname Link with a library indicated in name.

-nobss_init Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been
preprocessed and writes the results to files named according to the
compiler's default file-naming conventions.

-S Generates assemblable file only (with .s suffix), then stops the
compilation.

-sox[-]
IA-32 only

Enables [disables] the saving of compiler options and version
information in the executable file. Default is -sox-.

-Zp{1|2|4|8|16} Packs structures on 1, 2, 4, 8, or 16 byte boundaries.

Building and Debugging Applications

53

Controlling Compilation Output
Option Description

-oname Produces an assembly file with the specified file name, or the default file name if
name is not specified.

-S Generates assemblable file only (with .s suffix), then stops the compilation.

Specifying Alternate Tools and Paths
You can direct the compiler to specify alternate tools for preprocessing, compilation, assembly,
and linking. Further, you can invoke options specific to your alternate tools on the command line.
The following sections explain how to use -Qlocation and -Qoption to do this.

How to Specify an Alternate Component
Use -Qlocation to specify an alternate path for a tool. This option accepts two arguments
using the following syntax:

prompt>icpc -Qlocation,tool,path

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

path is the complete path to the tool.

How to Pass Options to Other Programs
Use -Qoption to pass an option specified by optlist to a tool, where optlist is a
comma-separated list of options. The syntax for this command is the following:
prompt>icpc -Qoption,tool,optlist

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

optlist indicates one or more valid argument strings for the designated program. If the
argument is a command-line option, you must include the hyphen. If the argument contains a
space or tab character, you must enclose the entire argument in quotation characters (""). You
must separate multiple arguments with commas. The following example directs the linker to create
a memory map when the compiler produces the executable file from the source.

Intel® C++ Compiler for Linux* Systems User's Guide

54

prompt>icpc -Qoption,link,-map,proto.map proto.cpp

The -Qoption,link option in the preceding example is passing the -map option to the linker.
This is an explicit way to pass arguments to other tools in the compilation process. Also, you can
use the -Xlinker val to pass values (val) to the linker.

Monitoring Data Settings
The options described below provide monitoring of Intel compiler-generated code.

Specifying Structure Tag Alignments
You can specify an alignment constraint for structures and unions in two ways:

• Place a pack pragma in your source file, or

• Enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Flushing Denormal Values to Zero for Itanium-based Systems Only
Option -ftz flushes denormal results to zero when the application is in the gradual underflow
mode. Use this option if the denormal values are not critical to application behavior. Flushing the
denormal values to zero with -ftz may improve performance of your application. The default
status of -ftz is OFF. By default, the compiler lets results gradually underflow.

The -ftz switch only needs to be used on the source containing function main(). The effect of
the -ftz switch is to turn on FTZ mode for the process started by main(). The initial thread and
any threads subsequently created by that process will operate in FTZ mode.

 Note

The -O3 option turns -ftz ON. Use -ftz- to disable flushing denormal results to zero.

Allocation of Zero-initialized Variables
By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_init option, you can place any variables that are explicitly initialized with zeros in the
DATA section if required.

Building and Debugging Applications

55

Precompiled Header Files
The Intel® C++ Compiler supports precompiled header (PCH) files to significantly reduce
compile times using the following options:

• -pch

• -create_pch filename

• -use_pch filename

• -pch_dir dirname

 Caution

Depending on how you organize the header files listed in your sources, these options may increase
compile times. See Organizing Source Files to learn how to optimize compile times using the PCH
options.

-pch
The -pch option directs the compiler to use appropriate PCH files. If none are available, they are
created as sourcefile.pchi. This option supports multiple source files, such as the ones
shown in Example 1:

Example 1 command line:
prompt>icpc -pch source1.cpp source2.cpp

Example 1 output when .pchi files do not exist:
"source1.cpp": creating precompiled header file "source1.pchi"
"source2.cpp": creating precompiled header file "source2.pchi"

Example 1 output when .pchi files do exist:
"source1.cpp": using precompiled header file "source1.pchi"
"source2.cpp": using precompiled header file "source2.pchi"

 Note

The -pch option will use PCH files created from other sources if the headers files are the same.
For example, if you compile source1.cpp using -pch, then source1.pchi is created. If
you then compile source2.cpp using -pch, the compiler will use source1.pchi if it
detects the same headers.

-create_pch
Use the -create_pch filename option if you want the compiler to create a PCH file called
filename. Note the following regarding this option:

• The filename parameter must be specified.

• The filename parameter can be a full path name.

• The full path to filename must exist.

• The .pchi extension is not automatically appended to filename.

• This option cannot be used in the same compilation as -use_pch filename.

• The -create_pch filename option is supported for single source file compilations
only.

Intel® C++ Compiler for Linux* Systems User's Guide

56

Example 2 command line:
prompt>icpc -create_pch /pch/source32.pchi source.cpp

Example 2 output:
"source.cpp": creating precompiled header file
"/pch/source32.pchi"

-use_pch filename
This option directs the compiler to use the PCH file specified by filename. It cannot be used in
the same compilation as -create_pch filename. The -use_pch filename option
supports full path names and supports multiple source files when all source files use the same
.pchi file.

Example 3 command line:
prompt>icpc -use_pch /pch/source32.pchi source.cpp

Example 3 output:
"source.cpp": using precompiled header file /pch/source32.pchi

-pch_dir dirname
Use the -pch_dir dirname option to specify the path (dirname) to the PCH file. You can
use this option with -pch, -create_pch filename, and -use_pch filename.

Example 4 command line:
prompt>icpc -pch -pch_dir /pch source32.cpp

Example 4 output:
"source32.cpp": creating precompiled header file
/pch/source32.pchi

Organizing Source Files
If many of your source files include a common set of header files, place the common headers first,
followed by the #pragma hdrstop directive. This pragma instructs the compiler to stop
generating PCH files. For example, if source1.cpp, source2.cpp, and source3.cpp all
include common.h, then place #pragma hdrstop after common.h to optimize compile
times.

#include "common.h"
#pragma hdrstop
#include "noncommon.h"

When you compile using the -pch option:

prompt>icpc -pch source1.cpp source2.cpp source3.cpp

the compiler will generate one PCH file for all three source files:

"source1.cpp": creating precompiled header file "source1.pchi"
"source2.cpp": using precompiled header file "source1.pchi"
"source3.cpp": using precompiled header file "source1.pchi"

If you don't use #pragma hdrstop, a different PCH file is created for each source file if
different headers follow common.h, and the subsequent compile times will be longer. #pragma
hdrstop has no effect on compilations that do not use these PCH options.

Building and Debugging Applications

57

Linking
This topic describes the options that let you control and customize the linking with tools and
libraries and define the output of the ld linker. See the ld man page for more information on the
linker.

Option Description

-Ldirectory Instruct the linker to search directory for libraries.

-Qoption,tool,list Passes an argument list to another program in the compilation
sequence, such as the assembler or linker.

-shared Instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable.

-shared-libcxa -shared-libcxa has the opposite effect of -static-
libcxa. When it is used, the Intel-provided libcxa C++
library is linked in dynamically, allowing the user to override the
static linking behavior when the -static option is used. Note:
By default, all C++ standard and support libraries are linked
dynamically.

-i_dynamic Specifies that all Intel-provided libraries should be linked
dynamically.

-static Causes the executable to link all libraries statically, as opposed to
dynamically.
When -static is not used:

• /lib/ld-linux.so.2 is linked in

• all other libs are linked dynamically

When -static is used:
• /lib/ld-linux.so.2 is not linked in

• all other libs are linked statically

-static-libcxa By default, the Intel-provided libcxa C++ library is linked in
dynamically. Use -static-libcxa on the command line to
link libcxa statically, while still allowing the standard libraries
to be linked in by the default behavior.

-Bstatic This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

-Bdynamic This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

Intel® C++ Compiler for Linux* Systems User's Guide

58

Suppressing Linking
Use the -c option to suppress linking. For example, entering the following command produces the
object files file1.o and file2.o:

prompt>icpc -c file1.cpp file2.cpp

 Note

The preceding command does not link these files to produce an executable file.

Debugging
This section describes the basic command line options that you can use as tools to debug your
compilation and to display and check compilation errors. The options in this section describe:

• Parsing for Syntax Only

• Optimizations and Debugging

Parsing for Syntax Only
Use the -syntax option to stop processing source files after they have been parsed for C++
language errors. This option provides a method to quickly check whether sources are syntactically
and semantically correct. The compiler creates no output file. In the following example, the
compiler checks prog.cpp. and displays diagnostic information to the standard error output:

prompt>icpc -syntax prog.cpp

Optimizations and Debugging
This topic describes the command-line options that you can use to debug your compilation and to
display and check compilation errors. The options that enable you to get debug information while
optimizing are as follows:

Option Description

-O0 Disables optimizations. Enables the -fp option.

-g Generates symbolic debugging information and line numbers in the object
code for use by the source-level debuggers. Turns off -O2 and makes -
O0 the default unless -O1, -O2, or -O3 is explicitly specified in the
command line together with -g.

-fp
IA-32 only

Disable using the EBP register as general purpose register.

Option Effect on -fp

-O1, -O2, or -O3 Disables -fp.

-O0 Enables -fp.

Building and Debugging Applications

59

Combining Optimization and Debugging
The -O0 option turns off all optimizations so you can debug your program before any
optimization is attempted. To get the debug information, use the -g option. The compiler lets you
generate code to support symbolic debugging while -O1, -O2, or -O3 is specified on the
command line along with -g, which produces symbolic debug information in the object file.

Note that if you specify the -O1, -O2, or -O3 option with the -g option, some of the debugging
information returned may be inaccurate as a side-effect of optimization.

It is best to make your optimization and/or debugging choices explicit:

• If you need to debug your program excluding any optimization effect, use the -O0 option,
which turns off all the optimizations.

• If you need to debug your program with optimization enabled, then you can specify the -
O1, -O2, or -O3 option on the command line along with -g.

 Note

The -g option slows down the program when -O1, -O2, or -O3 is not specified. In this case -g
turns on -O0 which is what slows the program down. If both -O2 and -g are specified, the code
should run nearly the same speed as if -g were not specified.

Refer to the table below for the summary of the effects of using the -g option with the
optimization options.

These
options

Produce these results

-g Debugging information produced, -O0 enabled (optimizations disabled), -
fp enabled for IA-32-targeted compilations.

-g -O1 Debugging information produced, -O1 optimizations enabled.

-g -O2 Debugging information produced, -O2 optimizations enabled.

-g -O3 -fp Debugging information produced, -O3 optimizations enabled, -fp enabled
for IA-32-targeted compilations.

Debugging and Assembling
The assembly file is generated without debugging information, but if you produce an object file,it
will contain debugging information. If you link the object file and then use the GDB debugger on
it, you will get full symbolic representation.

60

Using Libraries
The Intel® C++ Compiler uses the GNU* C Library, Dinkumware* C++ Library, and the
Standard C++ Library. These libraries are documented at the following Internet locations:

GNU C Library
http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_toc.html

Dinkumware C++ Library
http://www.dinkumware.com/htm_cpl/lib_cpp.html

Standard C++ Library
http://gcc.gnu.org/onlinedocs/libstdc++

Default Libraries
The following libraries are supplied with the Intel® C++ Compiler:

Library Description

libguide.a
libguide.so

For OpenMP* implementation

libguide_stats.a
libguide_stats.so

OpenMP static library for the parallelizer tool with performance
statistics and profile information

libompstub.a Library that resolves references to OpenMP subroutines when
OpenMP is not in use

libsvml.a Short vector math library

libirc.a Intel support library for PGO and CPU dispatch

libircmt.a Mulit-thread version on libirc.a

libimf.a
libimf.so

Intel math library

libcprts.a
libcprts.so
libcprts.so.3

Dinkumware* C++ Library

libunwind.a
libunwind.so
libunwind.so.3

Unwinder library

libcxa.a
libcxa.so
libcxa.so.3

Intel run time support for C++ features

Using Libraries

61

Library Description

libcxaguard.a
libcxaguard.so
libcxaguard.so.3

Used for interoperability support with the -cxxlib-gcc option.
See gcc Interoperability.

When you invoke the -cxxlib-gcc option, the following replacements occur:

• libcprts is replaced with libstdc++ from the gcc* distribution (3.2 or newer)

• libcxa and libunwind are replaced by libgcc from the gcc distribution (3.2 or
newer)

If you want to link your program with alternate or additional libraries, specify them at the end of
the command line. For example, to compile and link prog.cpp with mylib.a, use the
following command:

prompt>icpc prog.cpp mylib.a

The mylib.a library appears prior to the libimf.a library in the command line for the ld
linker.

 Caution

The Linux* system libraries and the compiler libraries are not built with the -align option.
 Therefore, if you compile with the -align option and make a call to a compiler distributed or
system library, and have long long, double, or long double types in your interface, you
will get the wrong answer due to the difference in alignment. Any code built with -align
cannot make calls to libraries that use these types in their interfaces unless they are built with -
align (in which case they will not work without -align).

Math Libraries
The Intel math library, libimf.a, contains optimized versions of math functions found in the
standard C run-time library. The functions in libimf.a are optimized for program execution
speed on Intel® Pentium® III and Pentium 4 processors. The Itanium® compiler also includes a
libimf.a designed to optimize performance on Itanium-based systems. The Intel math library is
linked by default.

See Managing Libraries and Intel Math Library.

Intel® C++ Compiler for Linux* Systems User's Guide

62

Intel® Shared Libraries
By default, the Intel® C++ Compiler links Intel-provided C++ libraries dynamically. The GNU*
and Linux* system libraries are also linked dynamically.

Options for Shared Libraries
Option Description

-i_dynamic Use the -i_dynamic option to link Intel-provided C++ libraries
dynamically (default). This has the advantage of reducing the size of the
application binary, but it also requires the libraries to be on the systems
where the application runs.

-shared The -shared option instructs the compiler to build a Dynamic Shared
Object (DSO) instead of an executable. For more details, refer to the ld man
page documentation.

-fpic Use the -fpic option when building shared libraries for Itanium-based
systems. It is required for the compilation of each object file included in the
shared library.

Managing Libraries
The LD_LIBRARY_PATH environment variable contains a colon-separated list of directories in
which the linker will search for library (.a) files. If you want the linker to search additional
libraries, you can add their names to LD_LIBRARY_PATH, to the command line, or to a response
file (see Note below). In each case, the names of these libraries are passed to the linker before the
names of the Intel libraries that the driver always specifies.

Note

Response files are processed at the location they appear on the command line. If libraries are
specified in the response file, references from object files seen after the response file will not be
resolved in those libraries.

Modifying LD_LIBRARY_PATH
If you want to add a directory, /libs for example, to the LD_LIBRARY_PATH, you can do
either of the following:

• prompt>export LD_LIBRARY_PATH=/libs:$LD_LIBRARY_PATH

• startup file export LD_LIBRARY_PATH=/libs:$LD_LIBRARY_PATH

To compile file.cpp and link it with the library mylib.a, enter the following command:

prompt>icpc file.cpp mylib.a

The compiler passes file names to the linker in the following order:

1. the object file

2. any objects or libraries specified on the command line, in a response file, or in a
configuration file

3. the Intel® Math Library, libimf.a

Using Libraries

63

Compiling for Non-shared Libraries
This section includes information on:

• Global Symbols and Visibility Attributes

• Symbol Preemption

• Specifying Symbol Visibility Explicitly

• Other Visibility-related Command-line Options

Global Symbols and Visibility Attributes
A global symbol is one that is visible outside the compilation unit (single source file and its
include files) in which it is declared. In C/C++, this means anything declared at file level without
the static keyword. For example:

int x = 5; // global data definition
extern int y; // global data reference
int five() // global function definition
{ return 5; }
extern int four(); // global function reference

A complete program consists of a main program file and possibly one or more shareable object
(.so) files that contain the definitions for data or functions referenced by the main program.
 Similarly, shareable objects might reference data or functions defined in other shareable objects.
Shareable objects are so called because if more than one simultaneously executing process has the
shareable object mapped into its virtual memory, there is only one copy of the read-only portion of
the object resident in physical memory. The main program file and any shareable objects that it
references are collectively called the components of the program.

Each global symbol definition or reference in a compilation unit has a visibility attribute that
controls how (or if) it may be referenced from outside the component in which it is defined. There
are five possible values for visibility:

• EXTERNAL - The compiler must treat the symbol as though it is defined in another
component. For a definition, this means that the compiler must assume that the symbol will
be overridden (preempted) by a definition of the same name in another component. See
Symbol Preemption. If a function symbol has external visibility, the compiler knows that it
must be called indirectly and can inline the indirect call stub.

• DEFAULT - Other components can reference the symbol. Furthermore, the symbol
definition may be overridden (preempted) by a definition of the same name in another
component.

• PROTECTED - Other components can reference the symbol, but it cannot be preempted by
a definition of the same name in another component.

• HIDDEN - Other components cannot directly reference the symbol. However, its address
might be passed to other components indirectly (for example, as an argument to a call to a
function in another component, or by having its address stored in a data item reference by a
function in another component).

• INTERNAL - The symbol cannot be referenced outside its defining component, either
directly or indirectly.

Static local symbols (in C/C++, declared at file scope or elsewhere with the keyword static)
usually have HIDDEN visibility--they cannot be referenced directly by other components (or, for
that matter, other compilation units within the same component), but they might be referenced
indirectly.

Intel® C++ Compiler for Linux* Systems User's Guide

64

 Note

Visibility applies to references as well as definitions. A symbol reference's visibility attribute is an
assertion that the corresponding definition will have that visibility.

Symbol Preemption
Sometimes you may need to use some of the functions or data items from a shareable object, but
may wish to replace others with your own definitions. For example, you may want to use the
standard C runtime library shareable object, libc.so, but to use your own definitions of the
heap management routines malloc() and free(). In this case it is important that calls to
malloc() and free() within libc.so call your definition of the routines and not the
definitions present in libc.so. Your definition should override, or preempt, the definition
within the shareable object.

This feature of shareable objects is called symbol preemption. When the runtime loader loads a
component, all symbols within the component that have default visibility are subject to
preemption by symbols of the same name in components that are already loaded. Since the main
program image is always loaded first, none of the symbols it defines will be preempted.

The possibility of symbol preemption inhibits many valuable compiler optimizations because
symbols with default visibility are not bound to a memory address until runtime. For example,
calls to a routine with default visibility cannot be inlined because the routine might be preempted
if the compilation unit is linked into a shareable object. A preemptable data symbol cannot be
accessed using GP-relative addressing because the name may be bound to a symbol in a different
component; the GP-relative address is not known at compile time.

Symbol preemption is a very rarely used feature that has drastic negative consequences for
compiler optimization. For this reason, by default the compiler treats all global symbol definitions
as non-preemptable (i.e., protected visibility). Global references to symbols defined in other
compilation units are assumed by default to be preemptable (i.e., default visibility). In those rare
cases when you need all global definitions, as well as references, to be preemptable, specify the -
fpic option to override this default.

Specifying Symbol Visibility Explicitly
You can explicitly set the visibility of an individual symbol using the visibility attribute on a
data or function declaration. For example:

int i __attribute__ ((visibility("default")));
void __attribute__ ((visibility("hidden"))) x () {...}
extern void y() __attribute__ ((visibilty("protected");

The visibility declaration attribute accepts one of the five keywords:

• external

• default

• protected

• hidden

• internal

The value of the visibility declaration attribute overrides the default set by the -
fvisibility, -fpic, or -fno-common attributes.

Using Libraries

65

If you have a number of symbols for which you wish to specify the same visibility attribute,
you can set the visibility using one of the five command line options:

• -fvisibility-external=file

• -fvisibility-default=file

• -fvisibility-protected=file

• -fvisibility-hidden=file

• -fvisibility-internal=file

where file is the pathname of a file containing a list of the symbol names whose visibility you
wish to set. The symbol names in the file are separated by white space (blanks, TAB characters,
or newlines). For example, the command line option:

-fvisibility-protected=prot.txt

where file prot.txt contains:

a
b c d
 e

sets protected visibility for symbols a, b, c, d, and e. This has the same effect as

__attribute__ ((visibility=("protected")))

on the declaration for each of the symbols. Note that these two ways to explicitly set visibility are
mutually exclusive--you may use __attribute((visibilty())) on the declaration, or
specify the symbol name in a file, but not both.

You can set the default visibility for symbols using one of the command line options:

• -fvisibility=external

• -fvisibility=default

• -fvisibility=protected

• -fvisibility=hidden

• -fvisibility=internal

This option sets the visiblity for symbols not specified in a visibility list file and that do not have
__attribute__((visibilty())) in their declaration. For example, the command line
options:

-fvisibility=protected -fvisibility-default=prot.txt

where file prot.txt is as previously described, will cause all global symbols except a, b, c, d,
and e to have protected visibility. Those five symbols, however, will have default visibility and
thus be preemptable.

Intel® C++ Compiler for Linux* Systems User's Guide

66

Other Visibility-related Command-line Options
-fminshared

The -fminshared option specifies that the compilation unit will be part of a main program
component and will not be linked as part of a shareable object. Since symbols defined in the main
program cannot be preempted, this allows the compiler to treat symbols declared with default
visibility as though they have protected visibility (i.e., -fminshared implies -
fvisibility=protected). Also, the compiler need not generate position-independent code
for the main program. It can use absolute addressing, which may reduce the size of the global
offset table (GOT) and may reduce memory traffic.

-fpic
The -fpic option specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (i.e., preemptable) visibility unless explicitly specified otherwise.

-fno-common
Normally a C/C++ file-scope declaration with no initializer and without the extern or static
keyword

int i;

is represented as a common symbol. Such a symbol is treated as an external reference, except that
if no other compilation unit has a global definition for the name, the linker allocates memory for it.
The -fno-common option causes the compiler to treat what otherwise would be common
symbols as global definitions and to allocate memory for the symbol at compile time. This may
permit the compiler to use the more efficient GP-relative addressing mode when accessing the
symbol.

67

gcc* Compatibility
C language object files created with the Intel® C++ Compiler are binary compatible with the
GNU* gcc compiler and glibc, the GNU C language library. C language object files can be linked
with either the Intel compiler or the gcc compiler. However, to correctly pass the Intel libraries to
the linker, use the Intel compiler. See Linking and Default Libraries for more information.

GNU C includes several, non-standard features not found in ISO standard C. Some of these
extensions to the C language are supported in this version of the Intel C++ Compiler. See
http://www.gnu.org for more information.

gcc Language
Extension

Intel
Support

GNU Description and Examples

Statements and
Declarations in
Expressions

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Statement-Exprs.html#Statement%20Exprs

Locally Declared Labels Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Local-Labels.html#Local%20Labels

Labels as Values Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Labels-as-Values.html#Labels%20as%20Values

Nested Functions No http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Nested-Functions.html#Nested%20Functions

Constructing Function
Calls

No http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Constructing-Calls.html#Constructing%20Calls

Naming an Expression's
Type

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Naming-Types.html#Naming%20Types

Referring to a Type with
typeof

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Typeof.html#Typeof

Generalized Lvalues Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Lvalues.html#Lvalues

Conditionals with
Omitted Operands

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Conditionals.html#Conditionals

Double-Word Integers Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Long-Long.html#Long%20Long

Complex Numbers Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Complex.html#Complex

Hex Floats Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Hex-Floats.html#Hex%20Floats

Intel® C++ Compiler for Linux* Systems User's Guide

68

gcc Language
Extension

Intel
Support

GNU Description and Examples

Arrays of Length Zero Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Zero-Length.html#Zero%20Length

Arrays of Variable
Length

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Variable-Length.html#Variable%20Length

Macros with a Variable
Number of Arguments.

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Variadic-Macros.html#Variadic%20Macros

Slightly Looser Rules for
Escaped Newlines

No http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Escaped-Newlines.html#Escaped%20Newlines

String Literals with
Embedded Newlines

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Multi-line-Strings.html#Multi-line%20Strings

Non-Lvalue Arrays May
Have Subscripts

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Subscripting.html#Subscripting

Arithmetic on void-
Pointers

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Pointer-Arith.html#Pointer%20Arith

Arithmetic on Function-
Pointers

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Pointer-Arith.html#Pointer%20Arith

Non-Constant Initializers Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Initializers.html#Initializers

Compound Literals Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Compound-Literals.html#Compound%20Literals

Designated Initializers Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Designated-Inits.html#Designated%20Inits

Cast to a Union Type Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Cast-to-Union.html#Cast%20to%20Union

Case Ranges Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Case-Ranges.html#Case%20Ranges

Mixed Declarations and
Code

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Mixed-Declarations.html#Mixed%20Declarations

Declaring Attributes of
Functions

Most http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Function-Attributes.html#Function%20Attributes

Attribute Syntax Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Attribute-Syntax.html#Attribute%20Syntax

gcc* Compatibility

69

gcc Language
Extension

Intel
Support

GNU Description and Examples

Prototypes and
Old-Style
Function
Definitions

No http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Function-Prototypes.html#Function%20Prototypes

C++ Style Comments Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
C---Comments.html#C++%20Comments

Dollar Signs in Identifier
Names

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Dollar-Signs.html#Dollar%20Signs

The Character ESC in
Constants

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Character-Escapes.html#Character%20Escapes

Specifying Attributes of
Variables

Most http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Variable-Attributes.html#Variable%20Attributes

Specifying Attributes of
Types

Most http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Type-Attributes.html#Type%20Attributes

Inquiring on Alignment
of Types or Variables

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Alignment.html#Alignment

An Inline Function is As
Fast As a Macro

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Inline.html#Inline

Assembler Instructions
with C Expression
Operands

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Extended-Asm.html#Extended%20Asm

Controlling Names Used
in Assembler Code

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Asm-Labels.html#Asm%20Labels

Variables in Specified
Registers

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Explicit-Reg-Vars.html#Explicit%20Reg%20Vars

Alternate Keywords Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Alternate-Keywords.html#Alternate%20Keywords

Incomplete enum Types Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Incomplete-Enums.html#Incomplete%20Enums

Function Names as
Strings

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Function-Names.html#Function%20Names

Getting the Return or
Frame Address of a
Function

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Return-Address.html#Return%20Address

Intel® C++ Compiler for Linux* Systems User's Guide

70

gcc Language
Extension

Intel
Support

GNU Description and Examples

Using Vector
Instructions Through
Built-in Functions

Some http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Vector-Extensions.html#Vector%20Extensions

Other built-in functions
provided by GCC

Most http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Other-Builtins.html#Other%20Builtins

Built-in Functions
Specific to Particular
Target Machines

No http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Target-Builtins.html#Target%20Builtins

Pragmas Accepted by
GCC

No http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Pragmas.html#Pragmas

Unnamed struct/union
fields within
structs/unions

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Unnamed-Fields.html#Unnamed%20Fields

Minimum and Maximum
operators in C++

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Min-and-Max.html#Min%20and%20Max

When is a Volatile
Object Accessed?

No http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Volatiles.html#Volatiles

Restricting Pointer
Aliasing

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Restricted-Pointers.html#Restricted%20Pointers

Vague Linkage Yes http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Vague-Linkage.html#Vague%20Linkage

Declarations and
Definitions in One
Header

No http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
C---Interface.html#C++%20Interface

Where's the Template? extern
template
supported

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Template-
Instantiation.html#Template%20Instantiation

Extracting the function
pointer from a bound
pointer to member
function

No http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Bound-member-
functions.html#Bound%20member%20functions

C++-Specific Variable,
Function, and Type
Attributes

Yes http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
C---Attributes.html#C++%20Attributes

gcc* Compatibility

71

gcc Language
Extension

Intel
Support

GNU Description and Examples

Java Exceptions No http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Java-Exceptions.html#Java%20Exceptions

Deprecated Features No http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Deprecated-Features.html#Deprecated%20Features

Backwards
Compatibility

No http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/
Backwards-
Compatibility.html#Backwards%20Compatibility

 Note

The Intel C++ Compiler supports gcc*-style inline ASM if the assembler code uses AT&T*
System V/386 syntax, as defined in the gcc documentation at:
http://www.gnu.org/manual/gas/html_chapter/as_16.html

gcc* Interoperability
C++ compilers are interoperable if object files and libraries generated by one compiler can be
linked with object files and libraries generated by the second compiler, and the resulting
executable runs successfully. The Intel® C++ Compiler 8.0 has made significant improvements
towards interoperability and compatibility with the GNU gcc* compiler. This section describes
new interoperability options.

See gcc Compatibility for a detailed list of compatibility features.

Interoperability Compiler Options
The Intel® C++ Compiler options that affect gcc interoperability include:

• -cxxlib-gcc

• -gcc-name

• -gcc-version

-cxxlib-gcc option
The -cxxlib-gcc option lets you to build your applications using the C++ libraries and header
files included with the gcc compiler. They include:

• libstdc++ standard C++ header files

• libstdc++ standard C++ library

• libgcc C++ language support.

When you compile and link your application using the -cxxlib-gcc option, the resulting C++
object files, libraries, and executables can interoperate with C++ object files, libraries, and
executables generated by gcc 3.2. This means that third-party C++ libraries built with gcc 3.2 will
work with C++ code generated by the Intel Compiler 8.0.

The -cxxlib-gcc option can only be used on Linux distributions that include gcc 3.2. This is
required for C++ ABI conformance.

Intel® C++ Compiler for Linux* Systems User's Guide

72

By default, the Intel C++ Compiler uses headers and libraries included with the product. If you are
linking with code compiled with g++, which was compiled against gnu C++ headers, then
differences in the headers might cause incompatibilities that result in run-time errors.

If you build one shared library against the Intel C++ libraries, build a second shared library against
the gnu C++ libraries, and use both libraries in a single application, you will have two C++ run-
time libraries in use. Since the application might use symbols from both libraries, the following
problems may occur:

• partially initialized libraries

• lost I/O operations from data put in unaccessed buffers

• other strange results, such as jumbled output

The Intel C++ Compiler does not support more than one run-time library in one application.

 Warning

If you successfully compile your application using more than one run-time library, the resulting
program will likely be very unstable, especially when new code is linked against the shared
libraries.

You should use the -cxxlib-gcc option if your application includes source files generated by
g++ and source files generated by the Intel C++ Compiler. This option directs the Intel compiler to
use the g++ header and library files to build one set of run-time libraries. As a result, your
program should run correctly.

-gcc-name option
The -gcc-name=name option, used with -cxxlib-gcc, lets you specify the location of
g++* if the compiler cannot locate the gcc C++ libraries. Use this option when referencing a non-
standard gcc installation.

-gcc-version
The -gcc-version=nnn option provides compatible behavior with gcc, where nnn indicates
the gcc version. This version of the Intel compiler supports -gcc-version=320 (ON by
default).

Default Libraries and Headers
The -cxxlib-icc option directs the Intel compiler to use the C++ run-time libraries and C++
header files included with the Intel compiler. They include:

• libcprts standard C++ headers

• libcprts standard C++ library

• libcxa and libunwind C++ language support

The -cxxlib-icc option is ON by default and can be used with any supported Linux
distribution. See Release Notes.

gcc* Compatibility

73

Summary of Corresponding Libraries and Headers

Intel Library/Header gcc Library/Header

libcprts libstdc++

libcxa/libunwind libgcc

gcc Predefined Macros
The Intel C++ Compiler 8.0 includes new predefined macros also supported by gcc:

• __GNUC__

• __GNUC_MINOR__

• __GNUC_PATCHLEVEL__

You can specify the -no-gcc option if you do not want these macros defined. If you need gcc
interoperability (-cxxlib-gcc), do not use the -no-gcc compiler option.

See also GNU Environment Variables.

Intel® C++ Compiler for Linux* Systems User's Guide

74

gcc Built-in Functions
This version of the Intel® C++ compiler supports the following gcc built-in functions:

__builtin_abs
__builtin_labs
__builtin_cos
__builtin_cosf
__builtin_fabs
__builtin_fabsf
__builtin_memcmp
__builtin_memcpy
__builtin_sin
__builtin_sinf
__builtin_sqrt
__builtin_sqrtf
__builtin_strcmp
__builtin_strlen
__builtin_strncmp
__builtin_abort
__builtin_prefetch
__builtin_constant_p
__builtin_printf
__builtin_fprintf
__builtin_fscanf
__builtin_scanf
__builtin_fputs
__builtin_memset
__builtin_strcat
__builtin_strcpy
__builtin_strncpy
__builtin_exit
__builtin_strchr
__builtin_strspn
__builtin_strcspn
__builtin_strstr
__builtin_strpbrk
__builtin_strrchr
__builtin_strncat
__builtin_alloca
__builtin_ffs
__builtin_index
__builtin_rindex
__builtin_bcmp
__builtin_bzero
__builtin_sinl
__builtin_cosl
__builtin_sqrtl
__builtin_fabsl
__builtin_frame_address (IA-32 only)
__builtin_return_address (IA-32 only)

gcc* Compatibility

75

gcc Function Attributes
This version of the Intel® C++ Compiler supports the following gcc function attributes:

• noinline - prevents a function from being inlined

• always_inline - inlines the function even if no optimization is specified

• used - code must be emitted for the function even if the function is not referenced

Example
int round_sqrt(int) __attribute__ ((always_inline));

In this example, the function round_sqrt() is inlined even if no optimization is specified.

76

Language Conformance
Conformance Options

Option Description

-ansi Equivalent to GNU* ANSI

-strict_ansi Strict ANSI conformance dialect

-ansi_alias[-] -ansi_alias directs the compiler to assume the following:

• arrays are not accessed out of bounds.

• pointers are not cast to non-pointer types, and vice-versa.

• references to objects of two different scalar types cannot alias.
For example, an object of type int cannot alias with an object of
type float, or an object of type float cannot alias with an
object of type double.

If your program satisfies the above conditions, setting the -
ansi_alias flag will help the compiler better optimize the program.
However, if your program does not satisfy one of the above conditions,
the -ansi_alias flag may lead the compiler to generate incorrect
code.

Conformance to the C Standard
You can set the Intel® C++ Compiler to accept either

• ANSI conformance equivalent to GNU* ANSI with the -ansi option, or

• Strict ANSI conformance dialect with the -strict_ansi option

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect
The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language
compilation (ISO/IEC 9899:1990). This standard requires that conforming C compilers accept
minimum translation limits. This compiler exceeds all of the ANSI/ISO requirements for
minimum translation limits.

Language Conformance

77

Macros Included with the Compiler
The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies
in accordance with this standard:

The compiler provides predefined macros in addition to the predefined macros required by the
standard.

Macro Description

__cplusplus The name __cplusplus is defined when compiling a C++ translation
unit.

__DATE__ The date of compilation as a string literal in the form Mmm dd yyyy.

__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC__ The name __STDC__ is defined when compiling a C translation unit.

__TIME__ The time of compilation. As a string literal in the form hh:mm:ss.

C99 Support
The following C99 features are supported in this version of the Intel C++ Compiler when using
the -c99 option:

• restricted pointers (restrict keyword, available with -restrict). See Note below.

• variable-length Arrays

• flexible array members

• complex number support (_Complex keyword)

• hexadecimal floating-point constants

• compound literals

• designated initializers

• mixed declarations and code

• macros with a variable number of arguments

• inline functions (inline keyword)

• boolean type (_Bool keyword)

 Note

The -restrict option enables the recognition of the restrict keyword as defined by the ANSI
standard. By qualifying a pointer with the restrict keyword, the user asserts that an object
accessed via the pointer is only accessed via that pointer in the given scope. It is the user�s
responsibility to use the restrict keyword only when this assertion is true. In these cases, the use
of restrict will have no effect on program correctness, but may allow better optimization.

Intel® C++ Compiler for Linux* Systems User's Guide

78

These features are not supported:

• #pragma STDC FP_CONTRACT

• #pragma STDC FENV_ACCESS

• #pragma STDC CX_LIMITED_RANGE

• long double (128-bit representations)

Conformance to the C++ Standard
The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language, however, the export keyword for templates is not implemented.

79

Compiler Optimizations
Optimization Levels

This section discusses the command-line options -O0, -O1, -O2, and -O3. The -O0 option
disables optimizations. Each of the other three turns on several compiler capabilities. To specify
one of these optimizations, take into consideration the nature and structure of your application as
indicated in the more detailed description of the options. In general terms -O1, -O2, and -O3
optimize as follows:

• -O1 -- code size and locality

• -O2 -- code speed; this is the default option

• -O3 -- enables -O2 with more aggressive optimizations.

These options behave similarly on IA-32 and Itanium® architectures, with some specifics that are
detailed in the sections that follow.

Setting Optimization Levels
The following table details the effects of the -O0, -O1, -O2, -O3, and -fast options. The table
first describes the characteristics shared by both IA-32 and Itanium® architectures and then
explicitly describes the specifics (if any) of the -On options� behavior on each architecture.

Option Effect

-O0 Disables optimizations.

-O1 Optimizes to favor code size and code locality. Disables loop unrolling. May
improve performance for applications with very large code size, any branches, and
execution time not dominated by code within loops. In most cases, -O2 is
recommended over -O1.
IA-32 systems: Disables intrinsics inlining to reduce code size.
Itanium-based systems: Disables software pipelining and global code scheduling.

-O2, -O ON by default. Optimizes for code speed. This is the generally recommended
optimization level.
Itanium-based systems: Enables software pipelining.

-O3 Enables -O2 optimizations and more aggressive optimizations such as loop and
memory access transformations. The -O3 optimizations may slow down code in
some cases compared to -O2 optimizations. Recommended for applications that
have loops that heavily use floating-point calculations and process large data sets.
IA-32 systems: In conjunction with -ax{K|W|N|B|P} and -x{K|W|N|B|P}
options, this option causes the compiler to perform more aggressive data
dependency analysis than for -O2. This may result in longer compilation times.

Intel® C++ Compiler for Linux* Systems User's Guide

80

Option Effect

-fast The -fast option enhances execution speed across the entire program by
including the following options that can improve run-time performance:

• -O3 (maximum speed and high-level optimizations)

• -ipo (enables interprocedural optimizations across files)

• -static (prevents linking with shared libraries)

To override one of the options set by -fast, specify that option after the -fast
option on the command line. The options set by -fast may change from release to
release.
To target -fast optimizations for a specific processor, use one of the -x options.
For example:
prompt>icpc -fast -xW source_file.cpp

Restricting Optimizations
The following options restrict or preclude the compiler's ability to optimize your program:

Option Description

-O0 Disables optimizations. Enables the -fp option.

-mp Restricts optimizations that cause some minor loss or gain of precision in
floating-point arithmetic to maintain a declared level of precision and to
ensure that floating-point arithmetic more nearly conforms to the ANSI
and IEEE*standards.

-g Specifying the -g option turns off the default -O2 option and makes -
O0 the default unless -O1, -O2, or -O3 is explicitly specified in the
command line together with -g.

-nolib_inline Disables inline expansion of intrinsic functions.

Note

You can turn off all optimizations for specific functions by using #pragma optimize. In the
following example, all optimization is turned off for function foo():

#pragma optimize("", off)
foo(){
...
}

Valid second arguments for #pragma optimize are "on" or "off." With the "on" argument,
foo() is compiled with the same optimization as the rest of the program. The compiler ignores
first argument values.

Compiler Optimizations

81

Floating-point Optimizations
Floating-point Arithmetic Precision
Options for IA-32 and Itanium®-based Systems

-mp Option

The -mp option restricts optimization to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards. For most programs,
specifying this option adversely affects performance. If you are not sure whether your application
needs this option, try compiling and running your program both with and without it to evaluate the
effects on both performance and precision. Specifying the -mp option has the following effects on
program compilation:

• user variables declared as floating-point types are not assigned to registers.

• whenever an expression is spilled (moved from a register to memory), it is spilled as 80 bits
(extended precision), not 64 bits (double precision).

• floating-point arithmetic comparisons conform to the IEEE 754 specification except for NaN
behavior.

• the exact operations specified in the code are performed. For example, division is never
changed to multiplication by the reciprocal.

• the compiler performs floating-point operations in the order specified without reassociation.

• the compiler does not perform the constant-folding optimization on floating-point values.
Constant folding also eliminates any multiplication by 1, division by 1, and addition or
subtraction of 0. For example, code that adds 0.0 to a number is executed exactly as written.
Compile-time floating-point arithmetic is not performed to ensure that floating-point
exceptions are also maintained.

• floating-point operations conform to ANSI C. When assignments to type float and
double are made, the precision is rounded from 80 bits (extended) down to 32 bits (float)
or 64 bits (double). When you do not specify -mp, the extra bits of precision are not
always rounded before the variable is reused.

• sets the -nolib_inline option, which disables inline functions expansion.

-mp1 Option

Use the -mp1 option to improve floating-point precision. -mp1 disables fewer optimizations and
has less impact on performance than -mp.

Options for IA-32 Only

 Caution

A change of the default precision control or rounding mode (for example, by using the -pc32
flag or by user intervention) may affect the results returned by some of the mathematical
functions.

-long_double Option

Use -long_double to change the size of the long double type to 80 bits. The Intel compiler's
default long double type is 64 bits in size, the same as the double type. This option
introduces a number of incompatibilities with other files compiled without this option and with
calls to library routines. Therefore, Intel recommends that the use of long double variables be
local to a single file when you compile with this option.

Intel® C++ Compiler for Linux* Systems User's Guide

82

-prec_div Option

With some optimizations, such as -xK and -xW, the Intel® C++ Compiler changes floating-point
division computations into multiplication by the reciprocal of the denominator. For example, A/B
is computed as A x (1/B) to improve the speed of the computation. However, for values of B
greater than 2126, the value of 1/B is "flushed" (changed) to 0. When it is important to maintain the
value of 1/B, use -prec_div to disable the floating-point division-to-multiplication
optimization. The result of -prec_div is greater accuracy with some loss of performance.

-pcn Option

Use the -pcn option to enable floating-point significand precision control. Some floating-point
algorithms are sensitive to the accuracy of the significand or fractional part of the floating-point
value. For example, iterative operations like division and finding the square root can run faster if
you lower the precision with the -pcn option. Set n to one of the following values to round the
significand to the indicated number of bits:

• -pc32: 24 bits (single precision) -- See Caution statement above.

• -pc64: 53 bits (single precision)

• -pc80: 64 bits (single precision) -- Default

The default value for n is 80, indicating double precision. This option allows full optimization.
Using this option does not have the negative performance impact of using the -Op option because
only the fractional part of the floating-point value is affected. The range of the exponent is not
affected. The -pcn option causes the compiler to change the floating point precision control
when the main() function is compiled. The program that uses -pcn must use main() as its
entry point, and the file containing main() must be compiled with -pcn.

-rcd Option

The Intel compiler uses the -rcd option to improve the performance of code that requires
floating-point-to-integer conversions. The optimization is obtained by controlling the change of
the rounding mode. The system default floating point rounding mode is round-to-nearest. This
means that values are rounded during floating point calculations. However, the C language
requires floating point values to be truncated when a conversion to an integer is involved. To do
this, the compiler must change the rounding mode to truncation before each floating-point-to-
integer conversion and change it back afterwards. The -rcd option disables the change to
truncation of the rounding mode for all floating point calculations, including floating point-to-
integer conversions. Turning on this option can improve performance, but floating point
conversions to integer will not conform to C semantics.

-fp_port Option

The -fp_port option rounds floating-point results at assignments and casts. An impact on speed
may result.

-fpstkchk Option

When a function call returns a floating-point value, the return value should be placed at the top of
the FP stack. If the return value is unused, the compiler pops the value off the stack to keep the FP
stack in the correct state. However, if the application leaves out the function's prototype or
incorrectly prototypes the function, then the return value may remain on the stack. This may result
in the FP stack filling up and eventually overflowing.

Generally, when the FP stack overflows, a NaN value is put into FP calculations, and the
program's results differ. Unfortunately, the overflow point can be far away from the point of the
actual bug. The -fpchkstk option places code that would access violate immediately after an
incorrect call occurred, thus making it easier to locate these issues.

Compiler Optimizations

83

Floating-point Arithmetic Options for Itanium(R)-based Systems
The following options enable you to control the compiler optimizations for floating-point
computations on Itanium®-based systems:

• -ftz[-]

• -IPF_fma[-]

• -IPF_fp_speculationmode

• -IPF_flt_eval_method0

• -IPF_fltacc[-](Default:-IPF_fltacc-)

Flush Denormal Results to Zero
Use the -ftz option to flush denormal results to zero.

Contraction of FP Multiply and Add/Subtract Operations
-IPF_fma[-] enables [disables] the contraction of floating-point multiply and add/subtract
operations into a single operation. Unless -mp is specified, the compiler contracts these operations
whenever possible. The -mp option disables the contractions. Use -IPF_fma and -IPF_fma-
to override the default compiler behavior. For example, a combination of -mp and -IPF_fma
enables the compiler to contract operations (on Itanium®-based systems only):

prompt>icpc -mp -IPF_fma prog.cpp

FP Speculation
-IPF_fp_speculationmode sets the compiler to speculate on floating-point operations in
one of the following modes:

• fast: sets the compiler to speculate on floating-point operations

• safe: enables the compiler to speculate on floating-point operations only when it is safe

• strict: disables the speculation of floating-point operations.

• off: disables the speculation on floating-point operations.

Note
-IPF_fp_speculationsafe is the default when -O0 is specified.

FP Operations Evaluation
-IPF_flt_eval_method0 directs the compiler to evaluate the expressions involving floating-
point operands in the precision indicated by the variable types declared in the program.

Controlling Accuracy of the FP Results
-IPF_fltacc[-] enables [disables] optimizations that affect floating-point accuracy. By
default (-IPF_fltacc-) the compiler may apply optimizations that reduce floating-point
accuracy. You may use -IPF_fltacc or -mp to improve floating-point accuracy, but at the cost
of disabling some optimizations.

Intel® C++ Compiler for Linux* Systems User's Guide

84

Optimizing for Specific Processors
Processor Optimization for IA-32 only

The -tpp{5|6|7} options optimize your application's performance for a specific Intel
processor. The resulting binary will also run on the other processors listed in the table below. The
Intel® C++ Compiler includes gcc*-compatible versions of the -tpp options. These options are
listed in the gcc* Version column.

Option gcc* Version Optimizes for

-tpp5 -mcpu=pentium Intel® Pentium® processors

-tpp6 -mcpu=pentiumpro Intel Pentium Pro, Intel Pentium II, and Intel Pentium III
processors

-tpp7 -mcpu=pentium4 Intel Pentium 4 processors, Intel Pentium M processors,
and Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3)

Note

The -tpp7 option is ON by default.

Example

The invocations listed below all result in a compiled binary optimized for Pentium 4. The same
binary will also run on Pentium, Pentium Pro, Pentium II, and Pentium III processors.

prompt>icpc prog.cpp
prompt>icpc -tpp7 prog.cpp
prompt>icpc -mcpu=pentium4 prog.cpp

Processor Optimization (Itanium®-based Systems only)
The -tpp{1|2} options optimize your application's performance for a specific Intel® Itanium®
processor. The resulting binary will also run on the processors listed in the table below. The Intel®
C++ Compiler includes gcc*-compatible versions of the -tpp options. These options are listed in
the gcc* Version column.

Option gcc* Version Optimizes for

-tpp1 -mcpu=itanium Itanium processors

-tpp2 -mcpu=itanium2 Itanium 2 processors

Note

The -tpp2 option is ON by default.

Compiler Optimizations

85

Example

The invocations listed below all result in a compiled binary optimized for the Intel Itanium 2
processor. The same binary will also run on Intel Itanium processors.
prompt>icpc prog.cpp
prompt>icpc -tpp2 prog.cpp
prompt>icpc -mcpu=itanium2 prog.cpp

Processor-specific Optimization (IA-32 only)
The -x{K|W|N|B|P} options target your program to run on a specific Intel processor. The
resulting code might contain unconditional use of features that are not supported on other
processors.

Option Specific Optimization for...

-xK Intel® Pentium® III and compatible Intel processors.

-xW Intel Pentium 4 and compatible Intel processors.

-xN Intel Pentium 4 and compatible Intel processors. Programs, where the function
main() is compiled with this option, will detect non-compatible processors and
generate an error message during execution. This option also enables new
optimizations in addition to Intel processor-specific optimizations.

-xB Intel Pentium M and compatible Intel processors. Programs, where the function
main() is compiled with this option, will detect non-compatible processors and
generate an error message during execution. This option also enables new
optimizations in addition to Intel processor-specific optimizations.

-xP Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). Programs,
where the function main() is compiled with this option, will detect non-
compatible processors and generate an error message during execution. This option
also enables new optimizations in addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do not specify the -
x{K|W|N|B|P} option.

Example
The invocation below compiles prog.cpp for Intel Pentium 4 and compatible processors. The
resulting binary might not execute correctly on Pentium, Pentium Pro, Pentium II, Pentium III, or
Pentium with MMX technology processors, or on x86 processors not provided by Intel
corporation.

prompt>icpc -xW prog.cpp

 Caution

If a program compiled with -x{K|W|N|B|P} is executed on a non-compatible processor, it
might fail with an illegal instruction exception, or display other unexpected behavior. Executing
programs compiled with -xN, -xB, or -xP on unsupported processors (see table above) will
display the following run-time error:

Intel® C++ Compiler for Linux* Systems User's Guide

86

Fatal Error : This program was not built to run on the processor
in your system.

Automatic Processor-specific Optimizations (IA-32 only)
The -ax{K|W|N|B|P} options direct the compiler to find opportunities to generate separate
versions of functions that take advantage of features that are specific to the specified Intel
processor. If the compiler finds such an opportunity, it first checks whether generating a
processor-specific version of a function is likely to result in a performance gain. If this is the case,
the compiler generates both a processor-specific version of a function and a generic version of the
function. The generic version will run on any IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel processor in use. In
this way, the program can benefit from performance gains on more advanced Intel processors,
while still working properly on older IA-32 processors.

The disadvantages of using -ax{K|W|N|B|P} are:

• The size of the compiled binary increases because it contains processor-specific versions of
some of the code, as well as a generic version of the code.

• Performance is affected slightly by the run-time checks to determine which code to use.

 Note

Applications that you compile with this option will execute on any IA-32 processor. If you specify
both the -x and -ax options, the -x option forces the generic code to execute only on processors
compatible with the processor type specified by the -x option.

Option Optimizes Your Code for...

-axK Intel Pentium III and compatible Intel processors.

-axW Intel Pentium 4 and compatible Intel processors.

-axN Intel Pentium 4 and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axB Intel Pentium M and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axP Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). This option
also enables new optimizations in addition to Intel processor specific-optimizations.

Example
The compilation below will generate a single executable that includes:

• a generic version for use on any IA-32 processor

• a version optimized for Intel Pentium III processors, as long as there is a likely performance
benefit

• a version optimized for Intel Pentium 4 processors, as long as there is a likely performance
benefit

prompt>icpc -axKW prog.cpp

Compiler Optimizations

87

Manual CPU Dispatch (IA-32 only)
Use __declspec(cpu_specific) and __declspec(cpu_dispatch) in your code to
generate instructions specific to the Intel processor on which the application is running, and also to
execute correctly on other IA-32 processors.

 Note

Manual CPU dispatch cannot be used to recognize Intel® Itanium® processors. The syntax of
these extended attributes is as follows:

• cpu_specific(cpuid)

• cpu_dispatch(cpuid-list)

The values for cpuid and cpuid-list are shown in the tables below:

Processor Values for cpuid

x86 processors not provided by Intel Corporation generic

Intel® Pentium® processors pentium

Intel Pentium processors with MMX� Technology pentium_mmx

Intel Pentium Pro processors pentium_pro

Intel Pentium II processors pentium_ii

Intel Pentium III processors pentium_iii

Intel Pentium III (exclude xmm registers) pentium_iii_no_xmm_regs

Intel Pentium 4 processors pentium_4

Intel Pentium M processors pentium_m

Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3).

future_cpu_10

Values for cpuid-list

cpuid

cpuid-list, cpuid

The attributes are not case sensitive. The body of a function declared with
__declspec(cpu_dispatch) must be empty, and is referred to as a stub (an empty-bodied
function).

Intel® C++ Compiler for Linux* Systems User's Guide

88

Use the following guidelines to implement automatic processor dispatch support:

1. Stub for cpu_dispatch must have a cpuid defined in cpu_specific elsewhere
If the cpu_dispatch stub for a function f contains the cpuid p, then a
cpu_specific definition of f with cpuid p must appear somewhere in the program;
otherwise an unresolved external error is reported. A cpu_specific function definition
need not appear in the same translation unit as the corresponding cpu_dispatch stub,
unless the cpu_specific function is declared static. The inline attribute is disabled
for all cpu_specific and cpu_dispatch functions.

2. Must have a stub for cpu_specific function
If a function f is defined as __declspec(cpu_specific(p)), then a
cpu_dispatch stub must also appear for f within the program; and p must be in the
cpuid-list of that stub; otherwise, that cpu_specific definition cannot be called nor
generate an error condition.

3. Overrides command line settings
When a cpu_dispatch stub is compiled, its body is replaced with code that determines
the processor on which the program is running, then dispatches the "best" cpu_specific
implementation available as defined by the cpuid-list. The cpu_specific function
optimizes to the specified Intel processor regardless of command-line option settings.

Compiler Optimizations

89

Processor Dispatch Example
Here is an example of how these features can be used:

#include <mmintrin.h>
/* Pentium processor function does not use intrinsics to add
two arrays. */

__declspec(cpu_specific(pentium))
void array_sum(int *r, int *a, int *b,size_t l)
{
 for (; length > 0; l--)
 *result++ = *a++ + *b++;
}

/* Implementation for a Pentium processor with MMX technology
uses
an MMX instruction intrinsic to add four elements
simultaneously. */

__declspec(cpu_specific(pentium_MMX))
void array_sum(int *r,int const *a, int *b, size_t l)
{
 __m64 *mmx_result = (__m64 *)result;
 __m64 const *mmx_a = (__m64 const *)a;
 __m64 const *mmx_b = (__m64 const *)b;

 for (; length > 3; length -= 4)
 *mmx_result++ = _mm_add_pi16(*mmx_a++, *mmx_b++);

 /* The following code, which takes care of excess elements,
is not
 needed if the array sizes passed are known to be multiples
of four. */

 result = (unsigned short *)mmx_r;
 a = (unsigned short const *)mmx_a;
 b = (unsigned short const *)mmx_b;

 for (; length > 0; l--)
 *result++ = *a++ + *b++;
}

__declspec(cpu_dispatch(pentium, pentium_MMX))
void array_sum (int *r,int const *a, int *b, size_t l))

{

/* Empty function body informs the compiler to generate the
CPU-dispatch function listed in the cpu_dispatch clause. */

}

Intel® C++ Compiler for Linux* Systems User's Guide

90

Processor-specific Runtime Checks, IA-32 Systems
The Intel® C++ Compiler optimizations take effect at run time. For IA-32 systems, the compiler
enhances processor-specific optimizations by inserting a code segment in the program that
performs the run-time checks described below.

Check for Supported Processor with -xN, -xB, or -xP
To prevent execution errors, the compiler inserts code in the program to check for proper
processor usage. Programs compiled with options -xN, -xB, or -xP will check at run time
whether they are being executed on the Intel® Pentium® 4 processor, Intel Pentium M processor,
or the Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3), respectively, or a
compatible Intel processor. If the program is not executed on one of these processors, the program
terminates with an error.

Example

To optimize the program prog.cpp for the Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3), issue the following command:

prompt>icpc -xP prog.cpp

The resulting executable aborts if it is executed on a processor that does not support the Intel
Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3), such as the Intel Pentium III or
Intel Pentium 4 processor.

If you intend to run your programs on multiple IA-32 processors, do not use the -x{} options that
optimize for processor-specific features; consider using -ax{} to attain processor specific
performance and portability among different processors.

Setting FTZ and DAZ Flags
Previously, the values of the flags flush-to-zero (FTZ) and denormals-as-zero (DAZ) for IA-32
processors were off by default. However, even at the cost of losing IEEE compliance, turning
these flags on significantly increases the performance of programs with denormal floating-point
values in the gradual underflow mode run on the most recent IA-32 processors. Hence, for the
Intel Pentium III, Pentium 4, Pentium M, Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3), and compatible IA-32 processors, the compiler's default behavior is to turn
these flags on. The compiler inserts code in the program to perform a run-time check for the
processor on which the program runs to verify it is one of the afore-listed Intel processors.

Examples

• Executing a program on a Pentium III processor enables FTZ, but not DAZ.

• Executing a program on an Intel Pentium M processor or Intel Pentium 4 processor with
Streaming SIMD Extensions 3 (SSE3) enables both FTZ and DAZ.

These flags are only turned on by Intel processors that have been validated to support them.

For non-Intel processors, you can set the flags manually with the following macros:

Enable FTZ: _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON)

Enable DAZ: _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON)

The prototypes for these macros are in xmmintrin.h (FTZ) and pmmintrin.h (DAZ).

Compiler Optimizations

91

Interprocedural Optimizations
Use -ip and -ipo to enable interprocedural optimizations (IPO), which allow the compiler to
analyze your code to determine where to apply the optimizations listed in tables that follow.

IA-32 and Itanium®-based Applications

Optimization Affected Aspect of Program

Inline function
expansion

Calls, jumps, branches, and loops

Interprocedural
constant propagation

Arguments, global variables, and return values

Monitoring module-
level static variables

Further optimizations, loop invariant code

Dead code elimination Code size

Propagation of function
characteristics

Call deletion and call movement. Also enables knowledge of
functions that will not return, whether exceptions are thrown, the
stack needs alignment, or alignment of arguments.

Multifile optimization Affects the same aspects as -ip, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program

Passing arguments in registers Calls, register usage

Inline function expansion is one of the main optimizations performed by the interprocedural
optimizer. For function calls that the compiler believes are frequently executed, the compiler
might decide to replace the instructions of the call with code for the function itself (inline the call).

With -ip, the compiler performs inline function expansion for calls to functions defined within
the current source file. However, when you use -ipo to specify multifile IPO, the compiler
performs inline function expansion for calls to functions defined in separate files. For this reason,
it is important to compile the entire application or multiple, related source files together when you
specify -ipo.

The IPO optimizations are disabled by default.

Intel® C++ Compiler for Linux* Systems User's Guide

92

Interprocedural Optimization Options
Option Description

-ip Enables interprocedural optimizations for single file compilation.

-ip_no_inlining Disables inlining that would result from the -ip interprocedural
optimization, but has no effect on other interprocedural
optimizations.

-ipo Enables interprocedural optimizations across files.

-ipo_c Generates a multifile object file that can be used in further link
steps.

-ipo_obj Forces the compiler to create real object files when used with -
ipo.

-ipo_S Generates a multifile assemblable file named ipo_out.asm
that can be used in further link steps.

-inline_debug_info Preserve the source position of inlined code instead of assigning
the call-site source position to inlined code.

-nolib_inline Disables inline expansion of standard library functions.

Using -ip or -ipo with -Qoption Specifiers
Use -Qoption with the applicable keywords to select particular inline expansions and loop
optimizations. The option must be entered with a -ip or -ipo specification, as follows:

prompt>icpc -ip -Qoption,tool,opts

where tool is C++ (c) and opts are -Qoption specifiers (see below).

-option Specifiers
If you specify -ip or -ipo without any -Qoption qualification, the compiler

• expands functions in line

• propagates constant arguments

• passes arguments in registers

• monitors function-level static variables

Compiler Optimizations

93

You can refine interprocedural optimizations by using the following -Qoption specifiers. To
have an effect, the -Qoption option must be entered with either -ip or -ipo also specified, as
in this example:
prompt>icpc -ip -Qoption,c,ip_specifier

where ip_specifier is one of the specifiers described in the table below:

Specifer Description

-ip_args_in_regs=0 Disables the passing of arguments in registers. By
default, external functions can pass arguments in
registers when called locally. Normally, only static
functions can pass arguments in registers, provided
the address of the function is not taken and the
function does not use a variable number of
arguments.

-ip_ninl_max_stats=n Sets the valid max number of intermediate language
statements for a function that is expanded in line.
The number n is a positive integer. The number of
intermediate language statements usually exceeds
the actual number of source language statements.
The default value for n is 230. The compiler uses a
larger limit for user inline functions.

-ip_ninl_min_stats=n Sets the valid min number of intermediate language
statements for a function that is expanded in line.
The number n is a positive integer. The default value
for ip_ninl_min_stats is:

• IA-32 compiler: ip_ninl_min_stats = 7

• Itanium® compiler: ip_ninl_min_stats
= 15

-ip_ninl_max_total_stats=n Sets the maximum increase in size of a function,
measured in intermediate language statements, due
to inlining. n is a positive integer whose default
value is 2000.

The following command activates procedural and interprocedural optimizations on source.cpp
and sets the maximum increase in the number of intermediate language statements to 5 for each
function:

prompt>icpc -ip -Qoption,c,-ip_ninl_max_stats=5 source.cpp

Intel® C++ Compiler for Linux* Systems User's Guide

94

Multifile IPO
Multifile IPO obtains potential optimization information from individual program modules of a
multifile program. Using the information, the compiler performs optimizations across modules.

Building a program is divided into two phases -- compilation and linkage. Multifile IPO performs
different work depending on whether the compilation, linkage, or both are performed.

Compilation Phase
As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the
source code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile
IPO. Generating mock files instead of real object files reduces the time spent in the multifile IPO
compilation phase. Each mock object file contains the IR for its corresponding source file, but no
real code or data. These mock objects must be linked using the -ipo option or using the xild
tool.

 Note

Failure to link "mock" objects with -ipo or xild will result in linkage errors. There are
situations where mock object files cannot be used. See Compilation with Real Object Files for
more information.

Linkage Phase
When you specify -ipo, the compiler is invoked a final time before the linker. The compiler
performs multifile IPO across all object files that have an IR.

 Note

The compiler does not support multifile IPO for static libraries (.a files). See Compilation with
Real Object Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program automatically. If a
whole program is detected, the interprocedural constant propagation, stack frame alignment, data
layout and padding of common blocks optimizations perform more efficiently, while more dead
functions get deleted. This option is safe.

Compilation with Real Object Files
In certain situations you might need to generate real object files with -ipo. To force the compiler
to produce real object files instead of "mock" ones with IPO, you must specify -ipo_obj in
addition to -ipo.

Use of -ipo_obj is necessary under the following conditions:

• The objects produced by the compilation phase of -ipo will be placed in a static library
without the use of xild or xild -lib. The compiler does not support multifile IPO for
static libraries, so all static libraries are passed to the linker. Linking with a static library that
contains "mock" object files will result in linkage errors because the objects do not contain
real code or data. Specifying -ipo_obj causes the compiler to generate object files that
can be used in static libraries.

• Alternatively, if you create the static library using xiar or xild -lib, then the resulting
static library will work as a normal library.

• The objects produced by the compilation phase of -ipo might be linked without the -ipo
option and without the use of xild.

Compiler Optimizations

95

• You want to generate an assemblable file for each source file (using -S) while compiling
with -ipo. If you use -ipo with -S, but without -ipo_obj, the compiler issues a
warning and an empty assemblable file is produced for each compiled source file.

Implementing the IL Files with Version Numbers
An IPO compilation consists of two parts: the compile phase and the link phase. In the compile
phase, the compiler produces a file containing an intermediate language (IL) version of your code.
In the link phase, the compiler reads the IL and completes the compilation, producing a real object
file or executable.

Generally, different compiler versions produce IL based on different definitions, and therefore
they can be incompatible. The Intel® C++ Compiler assigns a unique version number with each
compiler's IL definition. If a compiler attempts to read IL in a file with a version number other
than its own, the compilation proceeds, but the IL is discarded and not used in the compilation.
The compiler then issues a warning about an incompatible IL.

IL in Objects and Libraries: More Optimizations

The IL produced by the Intel compiler is stored in a special section of the object file. The IL stored
in the object file is then placed in the library. If this library is used in an IPO compilation invoked
with the same compiler that produced the IL for the library, then the compiler can extract the IL
from the library and use it to optimize the program.

Creating a Multifile IPO Executable
This topic describes how to create a multifile IPO executable for compilations targeted for IA-32
and Itanium®-based systems.

If you separately compile and link your source modules with -ipo:

1. Compile with -ipo as follows:
prompt>icpc -ipo -c a.cpp b.cpp c.cpp

2. Use the -c option to stop compilation after generating .o files. Each object file has the IR
for the corresponding source file. With preceding results, you can now optimize
interprocedurally:
prompt>icpc -ipo a.o b.o c.o

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to the
link stage. For efficiency, combine steps 1 and 2:

prompt>icpc -ipo a.cpp b.cpp c.cpp

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO
with profile information for further optimization.

Creating a Multifile IPO Executable with xild
The Intel linker, xild, performs the following steps:

• invokes the Intel compiler to perform multifile IPO if objects containing IR are found

• invokes the GNU linker, ld, to link the application

The command-line syntax for xild is:

prompt>xild [<options>] <LINK_commandline>

where:

• [<options>] (optional) may include any gcc linker options or options supported only
by xild.

• <LINK_commandline> is the linker command line containing a set of valid arguments to
ld.

Intel® C++ Compiler for Linux* Systems User's Guide

96

To place the multifile IPO executable in ipo_file, use the option -ofilename, for example:

prompt>xild oipo_file a.o b.o c.o

xild calls Intel compiler to perform IPO for objects containing IR and creates a new list of
object(s) to be linked. Then xild calls ld to link the object files that are specified in the new list
and produce ipo_file executable specified by the -ofilename option.

 Note

The -ipo option can reorder object files and linker arguments on the command line. Therefore, if
your program relies on a precise order of arguments on the command line, -ipo can affect the
behavior of your program.

Usage Rules
You must use the Intel linker xild to link your application if:

• your source files were compiled with multifile IPO enabled. Multifile IPO is enabled by
specifying the -ipo command-line option

• you normally would invoke ld to link your application

The xild Options
The additional options supported by xild may be used to examine the results of multifile IPO.
These options are described in the following table.

Option Description

-ipo_o[file.s] Produces assemblable files for the multifile IPO compilation.
You may specify an optional name for the listing file, or a
directory (with the backslash) in which to place the file. The
default listing name is ipo_out.s.

-ipo_o[file.o] Produces object file for the multifile IPO compilation. You may
specify an optional name for the object file, or a directory (with
the backslash) in which to place the file. The default object file
name is ipo_out.o.

-ipo_fcode-asm Add code bytes to assemblable files

-ipo_fsource-asm Add high-level source code to assemblable files

-ipo_fverbose-asm,
-ipo_fnoverbose-asm

Enable and disable, respectively, inserting comments containing
version and options used in the assemblable file for xild

Compiler Optimizations

97

Creating a Library from IPO Objects
Normally, libraries are created using a library manager such as ar. Given a list of objects, the
library manager will insert the objects into a named library to be used in subsequent link steps.

prompt>xiar cru user.a a.o b.o

A library named user.a will be created containing a.o and b.o.

If, however, the objects have been created using -ipo -c, then the objects will not contain a
valid object but only the intermediate representation (IR) for that object file. For example:

prompt>icpc -ipo -c a.cpp b.cpp

will produce a.o and b.o that only contains IR to be used in a link time compilation. The library
manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xild -ar. This program will invoke the
compiler on the IR saved in the object file and generate a valid object that can be inserted in a
library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xild.

Analyzing the Effects of Multifile IPO
The -ipo_c and -ipo_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the -ipo_c option to optimize across files and produce an object file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized
object file. The default name for this file is ipo_out.o.

Use the -ipo_S option to optimize across files and produce an assemblable file. This option
performs optimizations as described for -ipo, but stops prior to the final link stage, leaving an
optimized assemblable file. The default name for this file is ipo_out.s.

See also Inline Expansion of Functions.

Inline Expansion of Functions
Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options
shown in the following summary:

-ip_no_inlining This option is only useful if -ip is also specified. In this case, -
ip_no_inlining disables inlining that would result from the -
ip interprocedural optimizations, but has no effect on other
interprocedural optimizations.

-ip_no_pinlining Disables partial inlining; can be used if -ip or -ipo is also
specified.

Intel® C++ Compiler for Linux* Systems User's Guide

98

Criteria for Inline Function Expansion
Once the criteria are met, the compiler picks the routines whose inline expansion will provide the
greatest benefit to program performance. The inlining heuristics used by the compiler differ, based
on whether or not you use profile-guided optimizations (-prof_use). When you use profile-
guided optimizations with -ip or -ipo, the compiler uses the following heuristics:

• The default heuristic focuses on the most frequently executed call sites, based on the profile
information gathered for the program.

• By default, the compiler will not inline functions with more than 230 intermediate
statements. You can change this value by specifying the option -Qoption,c,-
ip_ninl_max_stats=new_value. Note: there is a higher limit for functions declared
by the user as inline or __inline.

• The default inline heuristic will stop inlining when direct recursion is detected.

• The default heuristic will always inline very small functions that meet the minimum inline
criteria.

• Default for Itanium®-based applications: ip_ninl_min_stats=15.

• Default for IA-32 applications: ip_ninl_min_stats=7. This limit can
be modified with the option -Qoption,c,-
ip_ninl_min_stats=new_value.

If you do not use profile-guided optimizations with -ip or -ipo, the compiler uses less
aggressive inlining heuristics:

• Inline a function if the inline expansion will not increase the size of the final program.

• Inline a function if it is declared with the inline or __inline keywords.

Compiler Optimizations

99

Profile-guided Optimizations
Profile-guided optimizations (PGO) tell the compiler which areas of an application are most
frequently executed. By knowing these areas, the compiler is able to use feedback from a previous
compilation to be more selective in optimizing the application. For example, the use of PGO often
enables the compiler to make better decisions about function inlining, thereby increasing the
effectiveness of interprocedural optimizations.

Instrumented Program
Profile-guided optimization creates an instrumented program from your source code and special
code from the compiler. Each time this instrumented code is executed, the instrumented program
generates a dynamic information file. When you compile a second time, the dynamic information
files are merged into a summary file. Using the profile information in this file, the compiler
attempts to optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of IPO and
PGO vary. This is due to each program having a different profile and different opportunities for
optimizations. The guidelines provided here help you determine if you can benefit by using IPO
and PGO.

Profile-guided Optimizations Methodology
PGO works best for code with many frequently executed branches that are difficult to predict at
compile time. An example is code that is heavy with error-checking in which the error conditions
are false most of the time. The "cold" error-handling code can be placed such that the branch is
rarely mispredicted. Eliminating the interleaving of "hot" and "cold" code improves instruction
cache behavior. For example, the use of PGO often enables the compiler to make better decisions
about function inlining, thereby increasing the effectiveness of interprocedural optimizations.

PGO Phases
The PGO methodology requires three phases:

• Phase 1: Instrumentation compilation and linking with -prof_gen[x]

• Phase 2: Instrumented execution by running the executable

• Phase 3: Feedback compilation with -prof_use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your
code are the most heavily used. If the data set provided to your program is very consistent and it
elicits a similar behavior on every execution, then PGO can probably help optimize your program
execution. However, different data sets can elicit different algorithms to be called. This can cause
the behavior of your program to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide
noticeable benefits. You have to ensure that the benefit of the profile information is worth the
effort required to maintain up-to-date profiles.

When using -prof_gen[x] with the x qualifier, extra source position is collected which
enables code coverage tools, such as the Intel® C++ Compiler Code-coverage Tool. Without such
tools, -prof_genx does not provide better optimization and may slow parallel compile times.

Intel® C++ Compiler for Linux* Systems User's Guide

100

Basic PGO Options
Option Description

-prof_gen[x] Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution.

-prof_use Instructs the compiler to produce a profile-optimized executable and
merges available dynamic information (.dyn) files into a pgopti.dpi
file.

In cases where your code behavior differs greatly between executions, you have to ensure that the
benefit of the profile information is worth the effort required to maintain up-to-date profiles. In the
basic profile-guided optimization, the following options are used in the phases of the PGO:

Generating Instrumented Code
The -prof_gen[x] option instruments the program for profiling to get the execution count of
each basic block. It is used in Phase 1 of the PGO to instruct the compiler to produce instrumented
code in your object files in preparation for instrumented execution. Parallel make is automatically
supported for -prof_genx compilations.

Generating a Profile-optimized Executable
The -prof_use option is used in Phase 3 of the PGO to instruct the compiler to produce a
profile-optimized executable and merges available dynamic-information (.dyn) files into a
pgopti.dpi file.

Note

The dynamic-information files are produced in Phase 2 when you run the instrumented executable.

If you perform multiple executions of the instrumented program, -prof_use merges the
dynamic-information files again and overwrites the previous pgopti.dpi file.

Disabling Function Splitting (Itanium® Compiler only)
-fnsplit- disables function splitting. Function splitting is enabled by -prof_use in Phase 3
to improve code locality by splitting routines into different sections: one section to contain the
cold or very infrequently executed code and one section to contain the rest of the code (hot code).

You can use -fnsplit- to disable function splitting for the following reasons:

• Most importantly, to get improved debugging capability. In the debug symbol table, it is
difficult to represent a split routine, that is, a routine with some of its code in the hot code
section and some of its code in the cold code section.

• The -fnsplit- option disables the splitting within a routine but enables function
grouping, an optimization in which entire routines are placed either in the cold code section
or the hot code section. Function grouping does not degrade debugging capability.

• Another reason can arise when the profile data does not represent the actual program
behavior, that is, when the routine is actually used frequently rather than infrequently.

Compiler Optimizations

101

Example of Profile-guided Optimization
The three basic phases of PGO are:

• Instrumentation Compilation and Linking

• Instrumented Execution

• Feedback Compilation

Instrumentation Compilation and Linking
Use -prof_gen to produce an executable with instrumented information. Use also the -
prof_dir option as recommended for most programs, especially if the application includes the
source files located in multiple directories. -prof_dir ensures that the profile information is
generated in one consistent place. For example:

prompt>icpc -prof_gen -prof_dir /profdata -c a1.cpp a2.cpp a3.cpp
prompt>icpc a1.o a2.o a3.o

In place of the second command, you could use the linker directly to produce the instrumented
program.

Instrumented Execution
Run your instrumented program with a representative set of data to create a dynamic information
file.

prompt>./a.out

The resulting dynamic information file has a unique name and .dyn suffix every time you run
a.o. The instrumented file helps predict how the program runs with a particular set of data. You
can run the program more than once with different input data.

Feedback Compilation
Compile and link the source files with -prof_use to use the dynamic information to optimize
your program according to its profile:

prompt>icpc -prof_use -ipo a1.cpp a2.cpp a3.cpp

Besides the optimization, the compiler produces a pgopti.dpi file. You typically specify the
default optimizations (-O2) for phase 1, and specify more advanced optimizations with -ipo for
phase 3. This example used -O2 in phase 1 and -O2 -ipo in phase 3.

 Note

The compiler ignores the -ipo options with -prof_gen[x]. With the x qualifier, extra
information is gathered.

PGO Environment Variables
The table below describes environment values to determine the directory to store dynamic
information files or whether to overwrite pgopti.dpi. Refer to your operating system
documentation for instructions on how to specify environment values.

Intel® C++ Compiler for Linux* Systems User's Guide

102

Profile-guided Optimization Environment Variables

Variable Description

PROF_DIR Specifies the directory in which dynamic information files are
created. This variable applies to all three phases of the profiling
process.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By default, during the
feedback compilation phase, the compiler merges the data from all
dynamic information files and creates a new pgopti.dpi file if
.dyn files are newer than an existing pgopti.dpi file. When this
variable is set, the compiler does not overwrite the existing
pgopti.dpi file. Instead, the compiler issues a warning and you
must remove the pgopti.dpi file if you want to use additional
dynamic information files.

Using profmerge to Relocate the Source Files
The compiler uses the full path to the source file to look up profile summary information. By
default, this prevents you from:

• using the profile summary file (.dpi) if you move your application sources

• sharing the profile summary file with another user who is building identical application
sources that are located in a different directory

Source Relocation
To enable the movement of application sources, as well as the sharing of profile summary files,
use profmerge with the -src_old and -src_new options. For example:

prompt>profmerge -prof_dir <p1> -src_old <p2> -src_new <p3>

where:

• <p1> is the full path to dynamic information file (.dpi).

• <p2> is the old full path to source files.

• <p3> is the new full path to source files.

The above command will read the pgopti.dpi file. For each function represented in the
pgopti.dpi file, whose source path begins with the <p2> prefix, profmerge replaces that
prefix with <p3>. The pgopti.dpi file is updated with the new source path information.

You can execute profmerge more than once on a given pgopti.dpi file. You may need to do
this if the source files are located in multiple directories. For example:

prompt>profmerge -prof_dir -src_old /src/prog_1 -src_new
/src/prog_2
prompt>profmerge -prof_dir -src_old /proj_1 -src_new /proj_2

In the values specified for -src_old and -src_new, uppercase and lowercase characters are
treated as identical. Likewise, forward slash (/) and backward slash (\) characters are treated as
identical.

Because the source relocation feature of profmerge modifies the pgopti.dpi file, you may
wish to make a backup copy of the file prior to performing the source relocation.

Compiler Optimizations

103

Code-coverage Tool
The Intel® C++ Compiler Code-coverage Tool can be used for both IA-32 and Itanium®
architectures in a number of ways to improve development efficiency, reduce defects, and increase
application performance. The major features of the Intel compiler Code-coverage Tool are:

• Visual presentation of the application's code coverage information with a code-coverage
coloring scheme

• Display of the dynamic execution counts of each basic block of the application

• Differential coverage or comparison of the profiles of the application's two runs

Command-line Syntax
The syntax for this tool is as follows:

codecov [-codecov_option]

where -codecov_option is a tool option. If you do not use any option, the tool will provide
the top-level code coverage for your whole program.

Tool Options
The tool uses options that are listed in the table that follows.

Option Description Default

-help Prints all the options of the code-coverage tool.

-spi file Sets the path name of the static profile information file
.spi.

pgopti.spi

-dpi file Sets the path name of the dynamic profile information file
.dpi.

pgopti.dpi

-prj Sets the project name.

-counts Generates dynamic execution counts.

-nopartial Treats partially covered code as fully covered code.

-comp Sets the filename that contains the list of files of interest.

-ref Finds the differential coverage with respect to ref_dpi_file.

-demang Demangles both function names and their arguments.

-mname Sets the name of the web-page owner.

-maddr Sets the email address of the web-page owner.

-bcolor Sets the html color name or code of the uncovered blocks. #ffff99

Intel® C++ Compiler for Linux* Systems User's Guide

104

Option Description Default

-fcolor Sets the html color name or code of the uncovered
functions.

#ffcccc

-pcolor Sets the html color name or code of the partially covered
code.

#fafad2

-ccolor Sets the html color name or code of the covered code. #ffffff

-ucolor Sets the html color name or code of the unknown code. #ffffff

Visual Presentation of the Application's Code Coverage
Based on the profile information collected from running the instrumented binaries when testing an
application, the Intel compiler creates HTML files using a code-coverage tool. These HTML files
indicate portions of the source code that were or were not exercised by the tests. When applied to
the profile of the performance workloads, the code-coverage information shows how well the
training workload covers the application's critical code. High coverage of performance-critical
modules is essential to taking full advantage of profile-guided optimizations.

The code-coverage tool can create two levels of coverage:

• Top level -- for a group of selected modules

• Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected. The
following options are provided:

• You can select the modules of interest

• For the selected modules, the tool generates a list with their coverage information. The
information includes the total number of functions and blocks in a module and the portions
that were covered.

• By clicking on the title of columns in the reported tables, the lists may be sorted in
ascending or descending order based on:

• basic block coverage

• function coverage

• function name.

The example that follows shows a top-level coverage summary for a project. By clicking on a
module name (for example, SAMPLE.C), the browser will display the coverage source view of
that particular module.

Compiler Optimizations

105

Browsing the Frames

The coverage tool creates frames that facilitate browsing through the code to identify uncovered
code. The top frame displays the list of uncovered functions while the bottom frame displays the
list of covered functions. For uncovered functions, the total number of basic blocks of each
function is also displayed. For covered functions, both the total number of blocks and the number
of covered blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function
were covered. The block coverage rate of that function is thus 66.67%. These lists can be sorted
based on the coverage rate, number of blocks, or function names. Function names are linked to
the position in source view where the function body starts. So, just by one click, the user can see
the least-covered function in the list and by another click the browser displays the body of the
function. The user can then scroll down in the source view and browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as
well as the list of covered functions. The lists are reported in two distinct frames that provide easy
navigation of the source code. The lists can be sorted based on:

• the number of blocks within uncovered functions

• the block coverage in the case of covered functions

• the function names.

Intel® C++ Compiler for Linux* Systems User's Guide

106

This example shows the coverage source view of SAMPLE.C.

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage categories:

• covered code

• uncovered basic blocks

• uncovered functions

• partially covered code

• unknown.

The default colors that the tool uses for presenting the coverage information are shown in the
tables that follows.

This color Means

Covered code The portion of code colored in this color was exercised by the tests. The
default color can be overridden with the -ccolor option.

Uncovered
basic block

Basic blocks that are colored in this color were not exercised by any of the
tests. They were, however, within functions that were executed during the
tests. The default color can be overridden with the -bcolor option.

Uncovered
function

Functions that are colored in this color were never called during the tests. The
default color can be overridden with the -fcolor option.

Partially
covered code

More than one basic block was generated for the code at this position. Some
of the blocks were covered while some were not. The default color can be
overridden with the -pcolor option.

Compiler Optimizations

107

This color Means

Unknown No code was generated for this source line. Most probably, the source at this
position is a comment, a header-file inclusion, or a variable declaration. The
default color can be overridden with the -ucolor option.

The default colors can be customized to be any valid HTML color by using the options mentioned
for each coverage category in the table above.

For code-coverage colored presentation, the coverage tool uses the following heuristic. Source
characters are scanned until reaching a position in the source that is indicated by the profile
information as the beginning of a basic block. If the profile information for that basic block
indicates that a coverage category changes, then the tool changes the color corresponding to the
coverage condition of that portion of the code, and the coverage tool inserts the appropriate color
change in the HTML files.

Note

You need to interpret the colors in the context of the code. For instance, comment lines that follow
a basic block that was never executed would be colored in the same color as the uncovered blocks.
Another example is the closing brackets in C/C++ applications.

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel compiler Code-coverage Tool is efficient coverage analysis of
an application' s subset of modules. This analysis is accomplished based on the selected option -
comp of the tool's execution.

You can generate the profile information for the whole application, or a subset of it, and then
divide the covered modules into different components and use the coverage tool to obtain the
coverage information of each individual component. If only a subset of the application modules is
compiled with the -prof_genx option, then the coverage information is generated only for
those modules that are involved with this compiler option, thus avoiding the overhead incurred for
profile generation of other modules.

To specify the modules of interest, use the tool's -comp option. This option takes the name of a
file as its argument. That file must be a text file that includes the name of modules or directories
you would like to analyze:

codecov -prj Project_Name -comp component1

Note

Each line of the component file should include one, and only one, module name.

Any module of the application whose full path name has an occurrence of any of the names in the
component file will be selected for coverage analysis. For example, if a line of file component1
in the above example contains mod1.cpp, then all modules in the application that have such a
name will be selected. The user can specify a particular module by giving more specific path
information. For instance, if the line contains /cmp1/mod1.cpp, then only those modules with
the name mod1.cpp will be selected that are in a directory named cmp1. If no component file is
specified, then all files that have been compiled with -prof_genx are selected for coverage
analysis.

Dynamic Counters
This feature displays the dynamic execution count of each basic block of the application,
providing useful information for both coverage and performance tuning.

The coverage tool can be configured to generate information about dynamic execution counts.
This configuration requires the -counts option. The counts information is displayed under the

Intel® C++ Compiler for Linux* Systems User's Guide

108

code after a ^ sign precisely under the source position where the corresponding basic block
begins. If more than one basic block is generated for the code at a source position (macros, for
example), then the total number of such blocks and the number of the blocks that were executed
are also displayed in front of the execution count.

In certain situations, it may be desirable to consider all the blocks generated for a single source
position as one entity. In such cases, it is necessary to assume that all blocks generated for one
source position are covered when at least one of the blocks is covered. This assumption can be
configured with the -nopartial option. When this option is specified, decision coverage is
disabled, and the related statistics are adjusted accordingly. The code lines 11 and 12 indicate that
the printf statement in line 12 was covered. However, only one of the conditions in line 11 was
ever true. With the -nopartial option, the tool treats the partially covered code (like the code
on line 11) as covered.

Differential Coverage
Using the code-coverage tool, you can compare the profiles of the application's two runs: a
reference run and a new run identifying the code that is covered by the new run but not covered by
the reference run. This feature can be used to find the portion of the application�s code that is not
covered by the application�s tests but is executed when the application is run by a customer. It can
also be used to find the incremental coverage impact of newly added tests to an application�s test
space.

The dynamic profile information of the reference run for differential coverage is specified by the -
ref option, such as in the following command:

codecov -prj Project_Name -dpi customer.dpi -ref appTests.dpi

The coverage statistics of a differential-coverage run shows the percentage of the code that was
exercised on a new run but was missed in the reference run. In such cases, the coverage tool shows
only the modules that included the code that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly. The code that has
the same coverage property (covered or not covered) on both runs is considered as covered code.
Otherwise, if the new run indicates that the code was executed while in the reference run the code
was not executed, then the code is treated as uncovered. On the other hand, if the code is covered
in the reference run but not covered in the new run, the differential-coverage source view shows
the code as covered.

Running for Differential Coverage

To run the Intel compiler Code-coverage Tool for differential coverage, the following files are
required:

• The application sources

• The .spi file generated by the Intel compiler when compiling the application for the
instrumented binaries with the -prof_genx option.

• The .dpi file generated by the Intel compiler profmerge utility as the result of merging
the dynamic profile information .dyn files or the .dpi file generated implicitly by Intel
compiler when compiling the application with the -prof_use option.

Once the required files are available, the coverage tool may be launched from this command line:

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi

The -spi and -dpi options specify the paths to the corresponding files.

The Code-coverage Tool also has the following additional options for generating a link at the
bottom of each HTML page to send an electronic message to a named contact by using -mname
and -maddr options.

codecov -prj Project_Name -mname John_Smith -maddr js@company.com

Compiler Optimizations

109

Test-prioritization Tool
The Intel® compiler Test-prioritization Tool enables profile-guided optimizations to select and
prioritize application tests based on prior execution profiles of the application. The tool offers a
potential of significant time saving in testing and developing large-scale applications where testing
is the major bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool lets you select and prioritize the tests that are most relevant for any subset of the
application's code. When certain modules of an application are changed, the Test-prioritization
Tool suggests the tests that are most probably affected by the change. The tool analyzes the profile
data from previous runs of the application, discovers the dependency between the application's
components and its tests, and uses this information to guide the process of testing.

Features and Benefits
The tool provides an effective testing hierarchy based on the application's code coverage. The
advantages of the tool usage can be summarized as follows:

• Minimizing the number of tests that are required to achieve a given overall coverage for any
subset of the application: the tool defines the smallest subset of the application tests that
achieve exactly the same code coverage as the entire set of tests.

• Reducing the turn-around time of testing: instead of spending a long time on finding a
possibly large number of failures, the tool enables the users to quickly find a small number
of tests that expose the defects associated with regressions caused by a change set.

• Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal
time based on the data of the tests' execution time.

Command-line Syntax
The syntax for this tool is as follows:

tselect -dpi_list file

where -dpi_list is a required tool option that sets the path to the DPI list file that contains
the list of the .dpi files of the tests you need to prioritize.

Tool Options
The tool uses options that are listed in the table that follows.

Option Description

-help Prints all the options of the test-prioritization tool.

-spi file Sets the path name of the static profile information file .spi. Default
is pgopti.spi

-dpi_list file Sets the path name of the file that contains the name of the dynamic
profile information (.dpi) files. Each line of the file should contain
one .dpi name optionally followed by its execution time. The name
must uniquely identify the test.

-prof_dpi file Sets the path name of the output report file.

-comp Sets the filename that contains the list of files of interest.

Intel® C++ Compiler for Linux* Systems User's Guide

110

Option Description

-cutoff value Terminates when the cumulative block coverage reaches value% of
pre-computed total coverage. value must be greater than 0.0 (for
example, 99.00). It may be set to 100.

-nototal Does not pre-compute the total coverage.

-mintime Minimizes testing execution time. The execution time of each test must
be provided on the same line of dpi_list file after the test name in
dd:hh:mm:ss format.

-verbose Generates more logging information about the program progress.

Usage Requirements
To run the Test-prioritization Tool on an application�s tests, the following files are required:

• The .spi file generated by the Intel compilers when compiling the application for the
instrumented binaries with the -prof_genx option.

• The .dpi files generated by the Intel compiler profmerge tool as a result of merging the
dynamic profile information .dyn files of each of the application tests. The user needs to
apply the profmerge tool to all .dyn files that are generated for each individual test and
name the resulting .dpi in a fashion that uniquely identifies the test. The profmerge tool
merges all the .dyn files that exist in the given directory.

 Note

It is very important that you make sure that unrelated .dyn files, oftentimes from previous runs or
from other tests, are not present in that directory. Otherwise, profile information will be based on
invalid profile data. This can negatively impact the performance of optimized code as well as
generate misleading coverage information.

 Note

For successful tool execution, you should:

• Name each test .dpi file so that the file names uniquely identify each test.

• Create a DPI list file: a text file that contains the names of all .dpi test files. The name of
this file serves as an input for the test-prioritization tool execution command. Each line of
the DPI list file should include one, and only one, .dpi file name. The name can optionally
be followed by the duration of the execution time for a corresponding test in the
dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 informs that Test1 lasted 0 days, 0 hours, 60
minutes and 35 seconds. The execution time is optional. However, if it is not provided, then the
tool will not prioritize the test for minimizing execution time. It will prioritize to minimize the
number of tests only.

Compiler Optimizations

111

Usage Model
The chart that follows presents the Test-prioritization Tool usage model.

Here are the steps for a simple example (myApp.c) for IA-32 systems.

1. Set

PROF_DIR=/myApp/prof_dir

2. Issue command

prompt>icpc -prof_genx myApp.c

This command compiles the program and generates an instrumented binary as well as the
corresponding static profile information pgopti.spi.

3. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

4. Issue command

myApp < data1

Invocation of this command runs the instrumented application and generates one or more new
dynamic profile information files that have an extension .dyn in the directory specified by
PROF_DIR.

Intel® C++ Compiler for Linux* Systems User's Guide

112

5. Issue command

profmerge -prof_dpi Test1.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test1.dpi) that
represents the total profile information of the application on Test1.

6. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

7. Issue command

myApp < data2

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension .dyn in the directory specified by PROF_DIR.

8. Issue command

profmerge -prof_dpi Test2.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test2.dpi) that
represents the total profile information of the application on Test2.

9. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

10. Issue command

myApp < data3

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension .dyn in the directory specified by PROF_DIR.

11. Issue Command

profmerge -prof_dpi Test3.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test3.dpi) that
represents the total profile information of the application on Test3.

12. Create a file named tests_list with three lines. The first line contains Test1.dpi, the
second line contains Test2.dpi, and the third line contains Test3.dpi.

When these items are available, the Test-prioritization Tool may be launched from the command
line in PROF_DIR directory as described in the following examples. In all examples, the
discussion references the same set of data.

Example 1 Minimizing the Number of Tests
tselect -dpi_list tests_list -spi pgopti.spi

where the -spi option specifies the path to the .spi file.

Here is a sample output from this run of the Test-prioritization Tool:

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00

Compiler Optimizations

113

Num %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options

1 87.50 45.65 37.50 Test3.dpi

2 100.00 52.17 50.00 Test2.dpi

In this example, the Test-prioritization Tool has provided the following information:

• By running all three tests, we achieve 52.17% block coverage and 50.00% function
coverage.

• Test3 covers 45.65% of the basic blocks of the application, which is 87.50% of the total
block coverage that can be achieved from all three tests.

• By adding Test2, we achieve a cumulative block coverage of 52.17% or 100% of the total
block coverage of Test1, Test2, and Test3.

• Elimination of Test1 has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in the tests_list file:

Test1.dpi 00:00:60:35
Test2.dpi 00:00:10:15
Test3.dpi 00:00:30:45

The following command executes the Test-prioritization Tool to minimize the execution time with
the -mintime option:

tselect -dpi_list tests_list -spi pgopti.spi -mintime

Here is a sample output:

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
Total execution time = 1:41:35

num elapsedTime %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options

1 10:15 75.00 39.13 25.00 Test2.dpi

2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would require one hour, 45
minutes, and 35 seconds, while the selected tests would achieve the same total block coverage in
only 41 minutes.

 Note

The order of tests when prioritization is based on minimizing time (first Test2, then Test3)
could be different than when prioritization is done based on minimizing the number of tests. See
example above: first Test3, then Test2. In Example 2, Test2 is the test that gives the highest
coverage per execution time. So, it is picked as the first test to run.

Intel® C++ Compiler for Linux* Systems User's Guide

114

Using Other Options

The -cutoff option enables the Test-prioritization Tool to exit when it reaches a given level of
basic block coverage.

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the above example, only Test3 will be
selected, as it achieves 45.65% block coverage, which corresponds to 87.50% of the total block
coverage that is reached from all three tests.

The Test-prioritization Tool does an initial merging of all the profile information to determine the
total coverage that is obtained by running all the tests. The -nototal option. enables you to skip
this step. In such a case, only the absolute coverage information will be reported, as the overall
coverage remains unknown.

PGO API: Profile Information Generation Support
Profile Information Generation Support lets you control of the generation of profile information
during the instrumented execution phase of profile-guided optimizations. Normally, profile
information is generated by an instrumented application when it terminates by calling the standard
exit() function. The functions described in this section may be necessary in assuring that
profile information is generated in the following situations:

• when the instrumented application exits using a non-standard exit routine

• when instrumented application is a non-terminating application where exit() is never
called

• when you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #include
<pgouser.h> at the top of any source file where the functions may be used.

The compiler sets a define for _PGO_INSTRUMENT when you compile with either -
prof_gen or -prof_genx.

Dumping Profile Information
void _PGOPTI_Prof_Dump(void);

Description

This function dumps the profile information collected by the instrumented application. The
profile information is recorded in a .dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application.
 Normally, _PGOPTI_Prof_Dump should be called just once. It is also possible to use this
function in conjunction with _PGOPTI_Prof_Reset() to generate multiple .dyn files
(presumably from multiple sets of input data).

Compiler Optimizations

115

Example

// Selectively collect profile information for the portion
// of the application involved in processing input data.

input_data = get_input_data();

while(input_data)
{
 _PGOPTI_Prof_Reset();
 process_data(input_data);
 _PGOPTI_Prof_Dump();
 input_data = get_input_data();
}

Resetting the Dynamic Profile Counters
void _PGOPTI_Prof_Reset(void);

Description

This function resets the dynamic profile counters.

Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of
the instrumented application. See the example under PGOPTI_Prof_Dump().

Dumping and Resetting Profile Information
void _PGOPTI_Prof_Dump_And_Reset(void);

Description

This function may be called more than once. Each call will dump the profile information to a new
.dyn file. The dynamic profile counters are then reset, and execution of the instrumented
application continues.

Recommended Usage

Periodic calls to this function allow a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided
optimization. The direct use of this function allows your application to control precisely when the
profile information is generated.

Interval Profile Dumping
void _PGOPTI_Set_Interval_Prof_Dump(int interval);

Description

This function activates Interval Profile Dumping and sets the approximate frequency at which
dumps will occur. The interval parameter is measured in milliseconds and specifies the time
interval at which profile dumping will occur. For example, if interval is set to 5000, then a
profile dump and reset will occur approximately every 5 seconds. The interval is approximate
because the time check controlling the dump and reset is only performed upon entry to any
instrumented function in your application.

Intel® C++ Compiler for Linux* Systems User's Guide

116

 Note

• Setting interval to zero or a negative number will disable interval profile dumping.

• Setting interval to a very small value may cause the instrumented application to spend
nearly all of its time dumping profile information. Be sure to set interval to a large
enough value so that the application can perform actual work and collect substantial profile
information.

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping.
 Note that an alternative method of initiating Interval Profile Dumping is by setting the
environment variable, PROF_DUMP_INTERVAL, to the desired interval value prior to
starting the application. The intention of Interval Profile Dumping is to allow a non-terminating
application to be profiled with minimal changes to the application source code.

Environment Variable
PROF_DUMP_INTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented
application. See the Recommended Usage of _PGOPTI_Set_Interval_Prof_Dump for
more information.

High-level Language Optimizations (HLO)
High-level optimizations (HLO) exploit the properties of source code constructs, such as loops
and arrays, in the applications developed in high-level programming languages, such as C++.
They include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam,
blocking, data prefetch, scalar replacement, data layout optimizations, and others. The option that
turns on the high-level optimizations is -O3.

IA-32 and Itanium®-based applications

-O3 Enable -O2 option plus more aggressive optimizations, for example, loop transformation
and prefetching. -O3 optimizes for maximum speed, but may not improve performance
for some programs.

IA-32 applications

-O3 In addition, in conjunction with the vectorization options, -ax{K|W|N|B|P} and -
x{K|W|N|B|P}, -O3 causes the compiler to perform more aggressive data dependency
analysis than for -O2. This may result in longer compilation times.

Note

The -fast option enhances execution speed across the entire program by including the following
options that can improve run-time performance:

• -O3 (maximum speed and high-level optimizations)

• -ipo (enables interprocedural optimizations across files)

• -static (prevents linking with shared libraries)

To override one of the options set by -fast, specify that option after the -fast option on the
command line. The options set by -fast may change from release to release.

Compiler Optimizations

117

To target -fast optimizations for a specific processor, use one of the -x options. For example:

prompt>icpc -fast -xW source_file.cpp

Loop Transformations
All these transformations are supported by data dependence. These techniques also include
induction variable elimination, constant propagation, copy propagation, forward substitution, and
dead code elimination. The loop transformation techniques include:

• loop normalization

• loop reversal

• loop interchange and permutation

• loop skewing

• loop distribution

• loop fusion

• scalar replacement

In addition to the loop transformations listed for both IA-32 and Itanium® architectures above, the
Itanium architecture allows collapsing techniques.

Absence of Loop-carried Memory Dependency with IVDEP
Directive

For Itanium®-based applications, the -ivdep_parallel option indicates there is absolutely no
loop-carried memory dependency in the loop where IVDEP directive is specified. This technique
is useful for some sparse matrix applications. For example, the following loop requires -
ivdep_parallel in addition to the directive IVDEP to indicate there is no loop-carried
dependencies.

Example

#pragma ivdep

for(i=1; i<n; i++)
{
 e[ix[2][i]]=e[ix[2][i]]+1.0;
 e[ix[3][i]]=e[ix[3][i]]+2.0;
}

The following example shows that using this option and the IVDEP directive ensures there is no
loop-carried dependency for the store into a().

Example

#pragma ivdep

for(j=0; j<n; j++)
{
 a[b[j]]=a[b[j]]+1;
}

118

Parallel Programming
For parallel programming, the Intel® C++ Compiler supports both the OpenMP* 2.0 API and an
automatic parallelization capability. The following table lists the options that perform OpenMP
and auto-parallelization support.

Option Description

-openmp Enables the parallelizer to generate multithreaded code based
on the OpenMP directives. Default: OFF.

-openmp_report{0|1|2} Controls the OpenMP parallelizer's diagnostic levels.
Default: -openmp_report1.

-openmp_stubs Enables compilation of OpenMP programs in sequential
mode. The OpenMP directives are ignored and a stub
OpenMP library is linked. Default: OFF.

-parallel Enables the auto-parallelizer to generate multithreaded code
for loops that can be safely executed in parallel. Default:
OFF.

-par_threshold{n} Sets a threshold for the auto-parallelization of loops based on
the probability of profitable execution of the loop in parallel,
n=0 to 100. n=0 implies "always." Default: -
par_threshold75.

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic levels.
Default: -par_report1

 Note

When both -openmp and -parallel are specified on the command line, the -parallel
option is honored only in routines that do not contain OpenMP directives. For routines that contain
OpenMP directives, only the -openmp option is honored.

Parallel Programming

119

Vectorization (IA-32 only)
The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD
instructions in the MMX�, SSE, and SSE2 instruction sets. The vectorizer detects operations in
the program that can be done in parallel, and then converts the sequential program to process 2, 4,
8, or 16 elements in one operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel C++ Compiler
vectorization on IA-32 systems only. The following list summarizes this section's contents.

• a quick reference of vectorization functionality and features

• descriptions of compiler switches to control vectorization

• descriptions of the C++ language features to control vectorization

• discussion and general guidelines on vectorization levels:

• automatic vectorization

• vectorization with user intervention

• examples demonstrating typical vectorization issues and resolutions

Vectorizer Options
Option Description

-ax{K|W|N|B|P} Enables the vectorizer and generates specialized and generic IA-32
code. The generic code is usually slower than the specialized code.

-x{K|W|N|B|P} Turns on the vectorizer and generates processor-
specific specialized code.

-vec_reportn Controls the vectorizer's level of diagnostic messages:

• n =0 no diagnostic information is displayed.

• n =1 display diagnostics indicating loops successfully
vectorized (default).

• n =2 same as n =1, plus diagnostics indicating loops not
successfully vectorized.

• n =3 same as n =2, plus additional information about any
proven or assumed dependences.

Usage
If you use -c, -ipo with -vec_report{n} option or -c, -x{K|W|N|B|P} or -
ax{K|W|N|B|P} with -vec_report{n}, the compiler issues a warning and no report is
generated.

To produce a report when using the aforementioned options, you need to add the -ipo_obj
option. The combination of -c and -ipo_obj produces a single file compilation, and hence does
generate object code, and eventually a report is generated.

Intel® C++ Compiler for Linux* Systems User's Guide

120

The following commands generate a vectorization report:

• prompt>icpc -x{K|W|N|B|P} -vec_report3 file.cpp

• prompt>icpc -x{K|W|N|B|P} -ipo -ipo_obj -vec_report3 file.cpp

• prompt>icpc -c -x{K|W|N|B||P} -ipo -ipo_obj -vec_report3
file.cpp

The following commands do not generate a vectorization report:

• prompt>icpc -c -x{K|W|M|B|P} -vec_report3 file.cpp

• prompt>icpc -x{K|W|N|B|P} -ipo -vec_report3 file.cpp

• prompt>icpc -c -x{K|W|N|B|P} -ipo -vec_report3 file.cpp

Loop Parallelization and Vectorization
Combining the -parallel and -x{K|W|N|B|P} options instructs the compiler to attempt
both automatic loop parallelization and automatic loop vectorization in the same compilation. In
most cases, the compiler will consider outermost loops for parallelization and innermost loops for
vectorization. If deemed profitable, however, the compiler may even apply loop parallelization
and vectorization to the same loop.

Note that in some cases successful loop parallelization (either automatically or by means of
OpenMP* directives) may affect the messages reported by the compiler for loop vectorization; for
example, under the -vec_report2 option indicating loops not successfully vectorized.

Vectorization Key Programming Guidelines
The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and
check them against your code to eliminate ambiguities that prevent the compiler from achieving
optimal vectorization.

Guidelines for loop bodies:
• use straight-line code (a single basic block)

• use vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments

• use only assignment statements

Avoid the following in loop bodies:
• function calls

• unvectorizable operations

• mixing vectorizable types in the same loop

• data-dependent loop exit conditions

Preparing your code for vectorization
To make your code vectorizable, you will often need to make some changes to your loops.
However, you should make only the changes needed to enable vectorization and no others. In
particular, you should avoid these common changes:

• do not unroll your loops, the compiler does this automatically

• do not decompose one loop with several statements in the body into several single-statement
loops

Parallel Programming

121

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the
case of Streaming SIMD Extensions, the vector memory operations are limited to stride-1
accesses with a preference to 16-byte-aligned memory references. This means that if the compiler
abstractly recognizes a loop as vectorizable, it still might not vectorize it for a distinct target
architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common
problem with global pointers is that they often prevent the compiler from being able to prove two
memory references at distinct locations. Consequently, this prevents certain reordering
transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop
structures. The ambiguity arises from the complexity of the keywords, operators, data references,
and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic
messages, you can modify your program to overcome the known limitations and enable effective
vectorizations. The following topics summarize the capabilities and restrictions of the vectorizer
with respect to loop structures.

Data Dependence
Data dependence relations represent the required ordering constraints on the operations in serial
loops. Because vectorization rearranges the order in which operations are executed, any auto-
vectorizer must have at its disposal some form of data dependence analysis. The "Data-dependent
Loop" example shows some code that exhibits data dependence. The value of each element of an
array is dependent on itself and its two neighbors.

Data-dependent Loop

float data[N];
int i;

for (i=1; i<N-1; i++)
{
 data[i]=data[i-1]*0.25+data[i]*0.5+data[i+1]*0.25;
}

The loop in the example above is not vectorizable because the write to the current element
data[i] is dependent on the use of the preceding element data[i-1], which has already been
written to and changed in the previous iteration. To see this, look at the access patterns of the array
for the first two iterations as shown in the following example:

Data Dependence Vectorization Patterns

for(i=0; i<100; i++)
a[i]=b[i];
has access pattern
read b[0]
write a[0]
read b[1]
write a[1]
i=1: READ data[0]
READ data[1]
READ data[2]
WRITE data[1]
i=2: READ data[1]
READ data[2]
READ data[3]
WRITE data[2]

Intel® C++ Compiler for Linux* Systems User's Guide

122

In the normal sequential version of the loop shown, the value of data[1] read during the second
iteration was written into the first iteration. For vectorization, the iterations must be done in
parallel, without changing the semantics of the original loop.

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may
overlap. Given two references in a program, the conditions are defined by:

• whether the referenced variables may be aliases for the same (or overlapping) regions in
memory,

• for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series
of tests that progressively increase in power as well as time and space costs. First, a number of
simple tests are performed in a dimension-by-dimension manner, since independence in any
dimension will exclude any dependence relationship. Multi-dimensional arrays references that
may cross their declared dimension boundaries can be converted to their linearized form before the
tests are applied. Some of the simple tests used are the fast GCD test, proving independence if the
greatest common divisor of the coefficients of loop indices cannot evenly divide the constant term,
and the extended bounds test, which tests potential overlap for the extreme values of subscript
expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful
hierarchical dependence solver that uses Fourier-Motzkin elimination to solve the data dependence
problem in all dimensions.

Loop Constructs
Loops can be formed with the usual for and while constructs. However, the loops must have a
single entry and a single exit to be vectorized.

Correct Usage

while(i<n)
{
 // If branch is inside body of loop

 a[i]=b[i]*c[i];
 if(a[i]<0.0)
 {
 a[i]=0.0;
 }
 i++;
}

Incorrect Usage

while(i<n)
{
 if (condition) break;
 // 2nd exit.
 ++i;
}

Parallel Programming

123

Loop Exit Conditions
Loop exit conditions determine the number of iterations that a loop executes. For example, fixed
indexes for loops determine the iterations. The loop iterations must be countable; that is, the
number of iterations must be expressed as one of the following:

• a constant

• a loop invariant term

• a linear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show countable and
non-countable loop constructs.

Correct Usage for Countable Loop

// Exit condition specified by "N-1b+1"
count=N;

...

while(count!=1b)
{
 // 1b is not affected within loop
 a[i]=b[i]*x;
 b[i]=[i]+sqrt(d[i]);
 --count;
}

Correct Usage for Countable Loop

// Exit condition is "(n-m+2)/2"
i=0;
for(l=m; l<n; l+=2)
{
 a[i]=b[i]*x;
 b[i]=c[i]+sqrt(d[i]);
 ++i;
}

Incorrect Usage for Non-Countable Loop

i=0;

// Iterations dependent on a[i]
while(a[i]>0.0)
{
 a[i]=b[i]*c[i];
 ++i;
}

Types of Loops Vectorized
For integer loops, MMX� technology and Streaming SIMD Extensions provide SIMD
instructions for most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data
types. Vectorization may proceed if the final precision of integer wrap-around arithmetic will be
preserved. A 32-bit shift-right operator, for instance, is not vectorized if the final stored value is a
16-bit integer. Also, note that because the MMX� instructions and Streaming SIMD Extensions
instruction sets are not fully orthogonal (byte shifts, for instance, are not supported), not all integer
operations can actually be vectorized.

Intel® C++ Compiler for Linux* Systems User's Guide

124

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, the Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators
+, -, *, and /. Also, the Streaming SIMD Extensions provide SIMD instructions for the binary
MIN, MAX, and unary SQRT operators. SIMD versions of several other mathematical operators
(like the trigonometric functions SIN, COS, TAN) are supported in software in a vector
mathematical run-time library that is provided with the Intel® C++ Compiler.

Strip Mining and Cleanup
Strip mining, also known as loop sectioning, is a loop transformation technique for enabling
SIMD-encodings of loops, as well as providing a means of improving memory performance. By
fragmenting a large loop into smaller segments or strips, this technique transforms the loop
structure in two ways:

• It increases the temporal and spatial locality in the data cache if the data are reusable in
different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of each "vector," or
number of operations being performed per SIMD operation. In the case of Streaming SIMD
Extensions, this vector, or strip length, is reduced by 4 times: four floating-point data items
per single Streaming SIMD Extensions single-precision floating-point SIMD operation are
processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector
operation is done for a size less than or equal to the maximum vector length on a given vector
machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Before Vectorization

i=0;
while(i<n)
{
 // Original loop code
 a[i]=b[i]+c[i];
 ++i;
}

After Vectorization

// The vectorizer generates the following two loops
i=0;

while(i<(n-n%4))
{
 // Vector strip-mined loop
 // Subscript [i:i+3] denotes SIMD execution
 a[i:i+3]=b[i:i+3]+c[i:i+3];
 i=i+4;
}

while(i<n)
{
 // Scalar clean-up loop
 a[i]=b[i]+c[i];
 ++i;
}

Parallel Programming

125

Statements in the Loop Body
The vectorizable operations are different for floating-point and integer data.

Floating-point Array Operations
The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root,
max, and min. Operation on double precision types is not permitted unless optimizing for a
Pentium® 4 processor system, using the -xW or -axW compiler option.

Integer Array Operations
The statements within the loop body may contain char, unsigned char, short, unsigned
short, int, and unsigned int. Calls to functions such as sqrt and fabs are also
supported. Arithmetic operations are limited to addition, subtraction, bitwise AND, OR, and XOR
operators, division (16-bit only), multiplication (16-bit only), min, and max. You can mix data
types only if the conversion can be done without a loss of precision. Some example operators
where you can mix data types are multiplication, shift, or unary operators.

Other Operations
No statements other than the preceding floating-point and integer operations are allowed. In
particular, note that the special __m64 and __m128 datatypes are not vectorizable. The loop body
cannot contain any function calls. Use of the Streaming SIMD Extensions intrinsics (
_mm_add_ps) are not allowed.

Language Support and Directives
This topic addresses language features that better help to vectorize code. The
declspec(align(n)) declaration enables you to overcome hardware alignment constraints.
The restrict qualifier and the pragmas address the stylistic issues due to lexical scope, data
dependence, and ambiguity resolution.

Language Support

Feature Description

__declspec(align(n)) Directs the compiler to align the
variable to an n-byte boundary.
Address of the variable is
address mod n=0.

__declspec(align(n,off)) Directs the compiler to align the
variable to an n-byte boundary
with offset off within each n-
byte boundary. Address of the
variable is address mod
n=off.

restrict Permits the disambiguator
flexibility in alias assumptions,
which enables more
vectorization.

Intel® C++ Compiler for Linux* Systems User's Guide

126

Feature Description

__assume_aligned(a,n) Instructs the compiler to assume
that array a is aligned on an n-
byte boundary; used in cases
where the compiler has failed to
obtain alignment information.

#pragma ivdep Instructs the compiler to ignore
assumed vector dependencies.

#pragma vector{aligned|unaligned|always} Specifies how to vectorize the
loop and indicates that
efficiency heuristics should be
ignored.

#pragma novector Specifies that the loop should
never be vectorized

Multi-version Code
Multi-version code is generated by the compiler in cases where data dependence analysis fails to
prove independence for a loop due to the occurrence of pointers with unknown values. This
functionality is referred to as dynamic dependence testing.

Pragma Scope
These pragmas control the vectorization of only the subsequent loop in the program, but the
compiler does not apply them to any nested loops. Each nested loop needs its own pragma
preceding it in order for the pragma to be applied. You must place a pragma only before the
loop control statement.

#pragma vector always

Syntax: #pragma vector always

Definition: This pragma instructs the compiler to override any efficiency heuristic during the
decision to vectorize or not. #pragma vector always will vectorize non-unit strides or very
unaligned memory accesses.

Example:

for(i = 0; i <= N; i++)
{
 a[32*i] = b[99*i];
}

#pragma ivdep

Syntax: #pragma ivdep

Definition: This pragma instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This pragma overrides that decision. Only use this when you know that the
assumed loop dependences are safe to ignore.

The loop in this example will not vectorize with the ivdep pragma, since the value of k is not
known (vectorization would be illegal if k<0).

Parallel Programming

127

Example:

#pragma ivdep
for (i = 0; i < m; i++)
{
 a[i] = a[i + k] * c;
}

#pragma vector

Syntax: #pragma vector{aligned | unaligned}

Definition: The vector loop pragma means the loop should be vectorized, if it is legal to do so,
ignoring normal heuristic decisions about profitability. When the aligned (or unaligned)
qualifier is used with this pragma, the loop should be vectorized using aligned (or
unaligned) operations. Specify one and only one of aligned or unaligned.

Caution

If you specify aligned as an argument, you must be absolutely sure that the loop will be
vectorizable using this instruction. Otherwise, the compiler will generate incorrect code.

The loop in the example below uses the aligned qualifier to request that the loop be vectorized
with aligned instructions, as the arrays are declared in such a way that the compiler could not
normally prove this would be safe to do so.

Example:

void foo (float *a)
{
 #pragma vector aligned
 for (i = 0; i < m; i++)
 {
 a[i] = a[i] * c;
 }
}

The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (but several other
strategies are supported as well). If, in the loop shown below, the alignment of a is unknown, the
compiler will generate a prelude loop that iterates until the array reference that occurs the most
hits an aligned address. This makes the alignment properties of a known, and the vector loop is
optimized accordingly.

Intel® C++ Compiler for Linux* Systems User's Guide

128

Alignment Strategies Example

float *a;
// alignment unknown
for (i = 0; i < 100; i++)
{
 a[i] = a[i] + 1.0f;
}

// dynamic loop peeling
p = a & 0x0f;
if (p != 0)
{
 p = (16 - p) / 4;
 for (i = 0; i < p; i++)
 {
 a[i] = a[i] + 1.0f;
 }
}

// loop with a aligned (will be vectorized accordingly)
for (i = p; i < 100; i++)
{
 a[i] = a[i] + 1.0f;
}

#pragma novector

Syntax: #pragma novector

Definition: The novector loop pragma specifies that the loop should never be vectorized, even
if it is legal to do so. In this example, suppose you know the trip count (ub - lb) is too low to
make vectorization worthwhile. You can use #pragma novector to tell the compiler not to
vectorize, even if the loop is considered vectorizable.

Example:

void foo (int lb, int ub)
{
 #pragma novector
 for (j = lb; j < ub; j++)
 {
 a[j] = a[j] + b[j];
 }
}

#pragma vector nontemporal

Syntax: #pragma vector nontemporal

Definition: #pragma vector nontemporal results in streaming stores on Pentium® 4
based systems. An example loop (float type) together with the generated assembly are shown in
the example below. For large N, significant performance improvements result on a Pentium 4
systems over a non-streaming implementation.

Parallel Programming

129

Example:

#pragma vector nontemporal
for (i = 0; i < N; i++)
 a[i] = 1;
 .B1.2:
movntps XMMWORD PTR _a[eax], xmm0
movntps XMMWORD PTR a[eax+16], xmm0
add eax, 32
cmp eax, 4096
jl .B1.2

Dynamic Dependence Testing Example

float *p, *q;
for (i = L; I <= U; i++)
{
 p[i] = q[i];
}
...
pL = p * 4*L;
pH = p + 4*U;
qL = q + 4*L;
qH = q + 4*U;
if (pH < qL || pL > qH)
{
 // loop without data dependence
 for (i = L; i <= U; i++)
 {
 p[i] = q[i];
 } else {
 for (i = L; i <= U; i++)
 {
 p[i] = q[i];
 }
}

Vectorization Examples
This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy
The loop in the example below, a vector copy operation, vectorizes because the compiler can
prove dest[i] and src[i] are distinct.

Vectorizable Copy Due To Unproven Distinction

void vec_copy(float *dest, float *src, int len)
{
 int i;
 for(i=0; i<len; i++;)
 {
 dest[i]=src[i];
 }
}

The restrict keyword in the example below indicates that the pointers refer to distinct objects.
Therefore, the compiler allows vectorization without generation of multi-version code.

Intel® C++ Compiler for Linux* Systems User's Guide

130

Using restrict to Prove Vectorizable Distinction

void vec_copy(float *restrict dest, float *restrict src, int
len)
{
 int i;
 for(i=0; i<len; i++)
 {
 dest[i]=src[i];
 }
}

Data Alignment
A 16-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit
(DCU) split due to misaligned data. The code loads the misaligned data across a 16-byte
boundary, which results in an additional memory access causing a six- to twelve-cycle stall. You
can avoid the stalls if you know that the data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary

For example, if you know that elements a[0] and b[0] are aligned on a 16-byte boundary, then
the following loop can be vectorized with the alignment option on (#pragma vector
aligned):

Alignment of Pointers is Known

float *a, *b;
int i;

for(int i=0; i<10; i++)
{
 a[i]=b[i];
}

After vectorization, the loop is executed as shown here:

Vector and Scalar Clean-up Iterations

Both the vector iterations a[0:3] = b[0:3]; and a[4:7] = b[4:7]; can be implemented
with aligned moves if both the elements a[0] and b[0] (or, likewise, a[4] and b[4]) are 16-
byte aligned.

 Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate
unexpected behavior. Specifically, using aligned moves on unaligned data, will result in an illegal
instruction exception.

Parallel Programming

131

Data Alignment Examples
The example below contains a loop that vectorizes but only with unaligned memory instructions.
The compiler can align the local arrays, but because lb is not known at compile-time. The correct
alignment cannot be determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time

void f(int lb)
{
 float z2[N], a2[N], y2[N], x2;
 for(i=lb; i<N; i++)
 {
 a2[i]=a2[i]*x2+y2[i];
 }
}

If you know that lb is a multiple of 4, you can align the loop with #pragma vector
aligned as shown in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4

void f(int lb)
{
 float z2[N], a2[N], y2[N], x2;
 assert(lb%4==0);

 #pragma vector aligned

 for(i=lb; i<N; i++)
 {
 a2[i]=a2[i]*x2+y2[i];
 }
}

Loop Interchange and Subscripts: Matrix Multiply
Matrix multiplication is commonly written as shown in the example below:

Typical Matrix Multiplication

for(i=0; i<N; i++)
{
 for(j=0; j<n; j++)
 {
 for(k=0; k<n; k++)
 {
 c[i][j]=c[i][j]+a[i][k]*b[k][j];
 }
 }
}

The use of b[k][j], is not a stride-1 reference and therefore will not normally be
vectorizable. If the loops are interchanged, however, all the references will become stride-1 as
shown in the "Matrix Multiplication With Stride-1" example.

 Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

Intel® C++ Compiler for Linux* Systems User's Guide

132

Matrix Multiplication With Stride-1

for(i = 0; i<N; i++)
{
 for(k=0; k<n; k++)
 {
 for(j=0; j<n; j++)
 {
 c[i][j]=c[i][j]+a[i][k]*b[k][j];
 }
 }
}

Auto Parallelization
The auto-parallelization feature of the Intel® C++ Compiler automatically translates serial
portions of the input program into equivalent multithreaded code. The auto-parallelizer analyzes
the dataflow of the program�s loops and generates multithreaded code for those loops which can
be safely and efficiently executed in parallel. This enables the potential exploitation of the parallel
architecture found in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

• having to deal with the details of finding loops that are good worksharing candidates

• performing the dataflow analysis to verify correct parallel execution

• partitioning the data for threaded code generation as is needed in programming with
OpenMP directives.

The parallel run-time support provides the same run-time features found in OpenMP*, such as
handling the details of loop iteration modification, thread scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel applications quickly,
the programmer must explicitly identify specific portions of the application code that contain
parallelism and add the appropriate compiler directives. Auto-parallelization triggered by the -
parallel option automatically identifies those loop structures which contain parallelism.
During compilation, the compiler automatically attempts to decompose the code sequences into
separate threads for parallel processing. No other effort by the programmer is needed.

The following example illustrates how a loop�s iteration space can be divided so that it can be
executed concurrently on two threads:

Original Serial Code

for (i=1; i<100; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

Parallel Programming

133

Transformed Parallel Code

/* Thread 1 */
for (i=1; i<50; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

/* Thread 2 */
for (i=50; i<100; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

Programming with Auto-parallelization
The auto-parallelization feature implements some concepts of OpenMP*, such as worksharing
construct (with the parallel for directive). This section provides specifics of auto-
parallelization.

Guidelines for Effective Auto-parallelization Usage
A loop is parallelizable if:

• The loop is countable at compile time. This means that an expression representing how
many times the loop will execute (also called "the loop trip count") can be generated just
before entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after READ) or ANTI (WRITE
after READ) loop-carried data dependences. A loop-carried data dependence occurs when
the same memory location is referenced in different iterations of the loop. At the compiler's
discretion, a loop may be parallelized if any assumed inhibiting loop-carried dependencies
can be resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in parallel for
loop with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

• Expose the trip count of loops whenever possible. Specifically use constants where the trip
count is known and save loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to carry
dependent data, for example, function calls, ambiguous indirect references, or global
references.

Auto-parallelization Data Flow
For auto-parallelization processing, the compiler performs the following steps:

1. Data flow analysis

2. Loop classification

3. Dependence analysis

4. High-level parallelization

5. Data partitioning

6. Multi-threaded code generation

Intel® C++ Compiler for Linux* Systems User's Guide

134

These steps include:

• Data flow analysis: compute the flow of data through the program

• Loop classification: determine loop candidates for parallelization based on correctness and
efficiency as shown by threshold analysis

• Dependence analysis: compute the dependence analysis for references in each loop nest

• High-level parallelization:

• analyze dependence graph to determine loops which can execute in parallel.

• compute run-time dependency

• Data partitioning: examine data reference and partition based on the following types of
access: shared, private, and firstprivate.

• Multi-threaded code generation:

• modify loop parameters

• generate entry/exit per threaded task

• generate calls to parallel runtime routines for thread creation and
synchronization

Auto-parallelization: Enabling, Options, and Environment
Variables

To enable the auto-parallelizer, use the -parallel option. The -parallel option detects
parallel loops capable of being executed safely in parallel and automatically generates
multithreaded code for these loops. An example of the command using auto-parallelization
follows:

prompt>icpc -c -parallel prog.cpp

Auto-parallelization Options
The -parallel option enables the auto-parallelizer if the -O2 (or -O3) optimization option is
also on (the default is -O2). The -parallel option detects parallel loops capable of being
executed safely in parallel and automatically generates multithreaded code for these loops.

Option Description

-parallel Enables the auto-parallelizer

-parallel_threshold{1-
100}

Controls the work threshold needed for auto-
parallelization, see later subsection.

-par_report{1|2|3} Controls the diagnostic messages from the auto-
parallelizer, see later subsection.

Parallel Programming

135

Auto-parallelization Environment Variables

Variable Description Default

OMP_NUM_THREADS Controls the number of
threads used.

Number of processors currently installed
in the system while generating the
executable

OMP_SCHEDULE Specifies the type of
runtime scheduling.

static

Auto-parallelization Threshold Control and Diagnostics
Threshold Control

The -par_threshold{n} option sets a threshold for the auto-parallelization of loops based on
the probability of profitable execution of the loop in parallel. The value of n can be from 0 to 100.
The default value is 75. This option is used for loops whose computation work volume cannot be
determined at compile-time. The threshold is usually relevant when the loop trip count is unknown
at compile-time.

The -par_threshold{n} option has the following versions and functionality:

• Default: -par_threshold is not specified in the command line, which is the same as
when -par_threshold0 is specified. The loops get auto-parallelized regardless of
computation work volume, that is, parallelize always.

• -par_threshold100 - loops get auto-parallelized only if profitable parallel execution is
almost certain.

• The intermediate 1 to 99 values represent the percentage probability for profitable speed-up.
For example, n=50 would mean: parallelize only if there is a 50% probability of the code
speeding up if executed in parallel.

• The default value of n is n=75 (or -par_threshold75). When -par_threshold is
used on the command line without a number, the default value passed is 75.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Diagnostics
The -par_report{0|1|2|3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2,
or 3 as follows:

• -par_report0 = no diagnostic information is displayed.

• -par_report1 = indicates loops successfully auto-parallelized (default). Issues a "LOOP
AUTO-PARALLELIZED" message for parallel loops.

• -par_report2 = indicates successfully auto-parallelized loops as well as unsuccessful
loops.

• -par_report3 = same as 2 plus additional information about any proven or assumed
dependencies inhibiting auto-parallelization (reasons for not parallelizing).

Intel® C++ Compiler for Linux* Systems User's Guide

136

Example of Parallelization Diagnostics Report

The example below shows output generated by -par_report3:

prompt>icpc -c -parallel -par_report3 prog.cpp

Sample Ouput

program prog
procedure: prog
serial loop: line 5: not a parallel candidate due to
statement at line 6
serial loop: line 9
flow data dependence from line 10 to line 10, due to "a"
12 Lines Compiled

where the program prog.cpp is as follows:

Sample prog.c

/* Assumed side effects */

for (i=1; i<10000; i++)
{
 a[i] = foo(i);
}

/* Actual dependence */

for (i=1; i<10000; i++)
{
 a[i] = a[i-1] + i;
}

Troubleshooting Tips
• Use -par_threshold0 to see if the compiler assumed there was not enough

computational work

• Use -par_report3 to view diagnostics

• Use -ipo to eliminate assumed side-effects done to function calls

Parallelization with OpenMP*
The Intel® C++ Compiler supports the OpenMP* C++ version 2.0 API specification. OpenMP
provides symmetric multiprocessing (SMP) with the following major features:

• Relieves the user from having to deal with the low-level details of iteration space
partitioning, data sharing, and thread scheduling and synchronization.

• Provides the benefit of the performance available from shared memory, multiprocessor
systems.

The Intel C++ Compiler performs transformations to generate multithreaded code based on the
user's placement of OpenMP directives in the source program making it easy to add threading to
existing software. The Intel compiler supports all of the current industry-standard OpenMP
directives, except WORKSHARE, and compiles parallel programs annotated with OpenMP
directives. In addition, the Intel C++ Compiler provides Intel-specific extensions to the OpenMP
C++ version 2.0 specification including run-time library routines and environment variables.

Parallel Programming

137

 Note

As with many advanced features of compilers, you must properly understand the functionality of
the OpenMP directives in order to use them effectively and avoid unwanted program behavior.

See parallelization options summary for all of the options of the OpenMP feature in the Intel C++
Compiler.

For complete information on the OpenMP standard, visit the OpenMP Web site at
http://www.openmp.org. For OpenMP* C++ version 2.0 API specifications, see
http://www.openmp.org/specs/.

Parallel Processing with OpenMP
To compile with OpenMP, you need to prepare your program by annotating the code with
OpenMP directives. The Intel C++ Compiler first processes the application and produces a
multithreaded version of the code which is then compiled. The output is a executable program
with the parallelism implemented by threads that execute parallel regions or constructs.

Targeting a Processor Run-time Check
While parallelzing a loop, the Intel compiler's loop parallelizer, OpenMP, tries to determine the
optimal set of configurations for a given processor. At run time, a check is performed to determine
for which IA-32 processor OpenMP should optimize a given loop. See detailed information in the
Processor-specific Runtime Checks, IA-32 Systems.

Performance Analysis
For performance analysis of your program, you can use the Intel® VTune� Performance
Analyzer to show performance information. You can obtain detailed information about which
portions of the code require the largest amount of time to execute and where parallel performance
problems are located.

Parallel Processing Thread Model
This topic explains the processing of the parallelized program and adds more definitions of the
terms used in parallel programming.

The Execution Flow
As previously mentioned, a program containing OpenMP* C++ API compiler directives begins
execution as a single process, called the master thread of execution. The master thread executes
sequentially until the first parallel construct is encountered.

In the OpenMP C++ API, the #pragma omp parallel directive defines the parallel
construct. When the master thread encounters a parallel construct, it creates a team of threads,
with the master thread becoming the master of the team. The program statements enclosed by the
parallel construct are executed in parallel by each thread in the team. These statements include
routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct. The
dynamic extent includes the static extent as well as the routines called from within the construct.
When the #pragma omp parallel directive reaches completion, the threads in the team
synchronize, the team is dissolved, and only the master thread continues execution. The other
threads in the team enter a wait state. You can specify any number of parallel constructs in a single
program. As a result, thread teams can be created and dissolved many times during program
execution.

Intel® C++ Compiler for Linux* Systems User's Guide

138

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that are
not in the lexical extent of the parallel construct, but are in the dynamic extent, are called orphaned
directives. Orphaned directives allow you to execute major portions of your program in parallel
with only minimal changes to the sequential version of the program. Using this functionality, you
can code parallel constructs at the top levels of your program and use directives to control
execution in any of the called routines. For example:

int main(void)
{
 ...
 #pragma omp parallel
 {
 phase1();
 }
}

void phase1(void)
{
 ...
 #pragma omp for private(i) shared(n)
 for(i=0; i < n; i++)
 {
 some_work(i);
 }
}

This is an orphaned directive because the parallel region is not lexically present.

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel
constructs. You can control the data environment within parallel and worksharing constructs.
Using directives and data environment clauses on directives, you can:

• Privatize scope variables by using the THREADPRIVATE directive

• Control data scope attributes by using the THREADPRIVATE directive's clauses. The data
scope attribute clauses are:

• COPYIN

• DEFAULT

• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE

• REDUCTION

• SHARED

You can use several directive clauses to control the data scope attributes of variables for the
duration of the construct in which you specify them. If you do not specify a data scope attribute
clause on a directive, the default is SHARED for those variables affected by the directive.

Pseudo Code of the Parallel Processing Model
A sample pseudo program using some of the more common OpenMP directives is shown in the
code example that follows. This example also indicates the difference between serial regions and
parallel regions.

Parallel Programming

139

main() { // Begin serial execution

 ... // Only the master thread executes

#pragma omp parallel // Begin a Parallel Construct, form

 { // a team. This is Replicated Code

 ... // (each team member executes

 ... // the same code)

 //

#pragma omp sections

// Begin a Worksharing Construct

 { //

 #pragma omp section

// One unit of work

 {...} //

 #pragma omp section

// Another unit of work

 {...} //

 } // Wait until both units of work
complete

 ... // More Replicated Code

 //

 #pragma omp for
nowait

// Begin a Worksharing Construct;

 for(...) { // each iteration is unit of work

 //

 ... // Work is distributed among the team
members

 //

 } // End of Worksharing Construct;

 // nowait was specified, so

 // threads proceed

 //

 #pragma omp critical

// Begin a Critical Section

 { //

 ... // Replicated Code, but only one

 // thread can execute it at a

 } // given time

 ... // More Replicated Code

 //

 #pragma omp barrier // Wait for all team members to arrive

Intel® C++ Compiler for Linux* Systems User's Guide

140

 ... // More Replicated Code

 //

} // End of Parallel Construct;

 // disband team and continue

 // serial execution

 //

... // Possibly more Parallel constructs

 //

} // End serial execution

Compiling with OpenMP, Directive Format, and Diagnostics
To run the Intel® C++ Compiler in OpenMP* mode, invoke the compiler with the -openmp
option:

prompt>icpc -openmp file.cpp

Before you run the multithreaded code, you can set the number of desired threads in the OpenMP
environment variable, OMP_NUM_THREADS. See OpenMP Environment Variables for further
information.

-openmp Option
The -openmp option enables the parallelizer to generate multithreaded code based on the
OpenMP directives. The code can be executed in parallel on both uniprocessor and multiprocessor
systems. The -openmp option works with both -O0 (no optimization) and any optimization level
of -O1, -O2 (default) and -O3. Specifying -O0 with -openmp helps to debug OpenMP
applications.

OpenMP Directive Format and Syntax
An OpenMP directive has the form:

#pragma omp directive-name [clause, ...] newline

where:

• #pragma omp -- Required for all OpenMP directives.

• directive-name -- A valid OpenMP directive. Must appear after the pragma and
before any clauses.

• clause -- Optional. Clauses can be in any order, and repeated as necessary unless
otherwise restricted.

• newline -- Required. Proceeds the structured block which is enclosed by this directive.

Parallel Programming

141

OpenMP Diagnostics
The -openmp_report{0|1|2} option controls the OpenMP parallelizer's diagnostic levels 0,
1, or 2 as follows:

• -openmp_report0 = no diagnostic information is displayed.

• -openmp_report1 = display diagnostics indicating loops, regions, and sections
successfully parallelized.

• -openmp_report2 = same as -openmp_report1 plus diagnostics indicating
MASTER constructs, SINGLE constructs, CRITICAL constructs, ORDERED constructs,
ATOMIC directives, etc. are successfully handled.

The default is -openmp_report1.

OpenMP* Directives and Clauses
OpenMP Directives

Directive Name Description

parallel Defines a parallel region.

for Identifies an iterative work-sharing construct that specifies a region
in which the iterations of the associated loop should be executed in
parallel.

sections Identifies a non-iterative work-sharing construct that specifies a set
of constructs that are to be divided among threads in a team.

single Identifies a construct that specifies that the associated structured
block is executed by only one thread in the team.

parallel for A shortcut for a parallel region that contains a single for
directive. The parallel or for OpenMP directive must be
immediately followed by a for statement. If you place other
statement or an OpenMP directive between the parallel or for
directive and the for statement, the Intel C++ Compiler issues a
syntax error.

parallel sections Provides a shortcut form for specifying a parallel region containing
a single sections directive.

master Identifies a construct that specifies a structured block that is
executed by the master thread of the team.

critical[lock] Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barrier Synchronizes all the threads in a team.

atomic Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the threads in a team
have a consistent view of certain objects in memory.

Intel® C++ Compiler for Linux* Systems User's Guide

142

Directive Name Description

ordered The structured block following an ordered directive is executed
in the order in which iterations would be executed in a sequential
loop.

threadprivate Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the
thread.

OpenMP Clauses

Clause Description

private Declares variables to be private to each thread in a team.

firstprivate Provides a superset of the functionality provided by the private clause.

lastprivate Provides a superset of the functionality provided by the private clause.

shared Shares variables among all the threads in a team.

default Enables you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

ordered The structured block following an ordered directive is executed in the
order in which iterations would be executed in a sequential loop.

if If the if(scalar_logical_expression) clause is present, the
enclosed code block is executed in parallel only if the
scalar_logical_expression evaluates to TRUE. Otherwise the
code block is serialized.

schedule Specifies how iterations of the for loop are divided among the threads of
the team.

copyin Provides a mechanism to assign the same name to threadprivate
variables for each thread in the team executing the parallel region.

OpenMP* Support Libraries
The Intel® C++ Compiler with OpenMP* support provides a production support library,
libguide.a. This library enables you to run an application under different execution modes. It
is used for normal or performance-critical runs on applications that have already been tuned.

Note

The libguide.lib library is linked dynamically, regardless of command-line options, to avoid
performance issues that are hard to debug.

Parallel Programming

143

Execution Modes
The Intel compiler with OpenMP enables you to run an application under different execution
modes that can be specified at run time. The libraries support the serial, turnaround, and
throughput modes. These modes are selected by using the KMP_LIBRARY environment variable
at run time.

Serial

The serial mode forces parallel applications to run on a single processor.

Turnaround

In a dedicated (batch or single user) parallel environment where all processors are exclusively
allocated to the program for its entire run, it is most important to effectively utilize all of the
processors all of the time. The turnaround mode is designed to keep active all of the processors
involved in the parallel computation in order to minimize the execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding to other threads.

Note

Avoid over-allocating system resources. This occurs if either too many threads have been
specified, or if too few processors are available at run time. If system resources are over-allocated,
this mode will cause poor performance. The throughput mode should be used instead if this
occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where the
job stream is not predictable, it may be better to design and tune for throughput. This minimizes
the total time to run multiple jobs simultaneously. In this mode, the worker threads will yield to
other threads while waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment (that is, the
system load) and to adjust its resource usage to produce efficient execution in a dynamic
environment. Throughput mode is the default.

OpenMP* Environment Variables
This topic describes the OpenMP* environment variables (with the OMP_ prefix) and Intel-
specific environment variables (with the KMP_ prefix).

Standard Environment Variables

Variable Description Default

OMP_SCHEDULE Sets the runtime schedule type and chunk size. STATIC (no chunk
size specified)

OMP_NUM_THREADS Sets the number of threads to use during
execution.

Number of
processors

OMP_DYNAMIC Enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads.

FALSE

OMP_NESTED Enables (TRUE) or disables (FALSE) nested
parallelism.

FALSE

Intel® C++ Compiler for Linux* Systems User's Guide

144

Intel Extension Environment Variables

Environment
Variable

Description Default

KMP_LIBRARY Selects the OpenMP run-time library throughput. The
options for the variable value are: serial,
turnaround, or throughput indicating the
execution mode. The default value of throughput
is used if this variable is not specified.

throughput
(execution
mode)

KMP_STACKSIZE Sets the number of bytes to allocate for each parallel
thread to use as its private stack. Use the optional
suffix b, k, m, g, or t, to specify bytes, kilobytes,
megabytes, gigabytes, or terabytes.

IA-32: 2m
Itanium®
compiler: 4m

OpenMP* Run-time Library Routines
OpenMP* provides several run-time library functions to assist you in managing your program in
parallel mode. Many of these functions have corresponding environment variables that can be set
as defaults. The run-time library functions enable you to dynamically change these factors to assist
in controlling your program. In all cases, a call to a run-time library function overrides any
corresponding environment variable.

The following table specifies the interfaces to these routines. The names for the routines are in
user name space. The omp.h and omp_lib.h header files are provided in the INCLUDE
directory of your compiler installation.

There are definitions for two different locks, omp_lock_kind and omp_nest_lock_kind,
which are used by the functions in the table that follows:

Execution Environment Routines

Function Description

omp_set_num_threads(nthreads) Sets the number of threads to use for
subsequent parallel regions.

omp_get_num_threads() Returns the number of threads that are being
used in the current parallel region.

omp_get_max_threads() Returns the maximum number of threads
that are available for parallel execution.

omp_get_thread_num() Returns the unique thread number of the
thread currently executing this section of
code.

omp_get_num_procs() Returns the number of processors available
to the program.

Parallel Programming

145

Function Description

omp_in_parallel() Returns TRUE if called within the dynamic
extent of a parallel region executing in
parallel; otherwise returns FALSE.

omp_set_dynamic(dynamic_threads) Enables or disables dynamic adjustment of
the number of threads used to execute a
parallel region. If dynamic_threads is
TRUE, dynamic threads are enabled. If
dynamic_threads is FALSE, dynamic
threads are disabled. Dynamics threads are
disabled by default.

omp_get_dynamic() Returns TRUE if dynamic thread adjustment
is enabled, otherwise returns FALSE.

omp_set_nested(nested) Enables or disables nested parallelism. If
nested is TRUE, nested parallelism is
enabled. If nested is FALSE, nested
parallelism is disabled. Nested parallelism is
disabled by default.

omp_get_nested() Returns TRUE if nested parallelism is
enabled, otherwise returns FALSE.

Lock Routines

Function Description

omp_init_lock(lock) Initializes the lock associated with lock for use in
subsequent calls.

omp_destroy_lock(lock) Causes the lock associated with lock to become
undefined.

omp_set_lock(lock) Forces the executing thread to wait until the lock
associated with lock is available. The thread is
granted ownership of the lock when it becomes
available.

omp_unset_lock(lock) Releases the executing thread from ownership of
the lock associated with lock. The behavior is
undefined if the executing thread does not own the
lock associated with lock.

omp_test_lock(lock Attempts to set the lock associated with lock. If
successful, returns TRUE, otherwise returns FALSE.

Intel® C++ Compiler for Linux* Systems User's Guide

146

Function Description

omp_init_nest_lock(lock) Initializes the nested lock associated with lock for
use in the subsequent calls.

omp_destroy_nest_lock(lock) Causes the nested lock associated with lock to
become undefined.

omp_set_nest_lock(lock) Forces the executing thread to wait until the nested
lock associated with lock is available. The thread
is granted ownership of the nested lock when it
becomes available.

omp_unset_nest_lock(lock) Releases the executing thread from ownership of
the nested lock associated with lock if the nesting
count is zero. Behavior is undefined if the executing
thread does not own the nested lock associated with
lock.

omp_test_nest_lock(lock) Attempts to set the nested lock associated with
lock. If successful, returns the nesting count,
otherwise returns zero.

Timing Routines

Function Description

omp_get_wtime() Returns a double-precision value equal to the elapsed wallclock time
(in seconds) relative to an arbitrary reference time. The reference time
does not change during program execution.

omp_get_wtick() Returns a double-precision value equal to the number of seconds
between successive clock ticks.

Parallel Programming

147

Examples of OpenMP* Usage
The following examples show how to use the OpenMP* feature.

A Simple Difference Operator
This example shows a simple parallel loop where the amount of work in each iteration is different.
Dynamic scheduling is used to get good load balancing. The for has a nowait because there is
an implicit barrier at the end of the parallel region.

void for_1 (float a[], float b[], int n)
{
 int i, j;
 #pragma omp parallel shared(a,b,n) private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++)
 {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }
 }
}

Two Difference Operators
The example below uses two parallel loops fused to reduce fork/join overhead. The first for has a
nowait because all the data used in the second loop is different than all the data used in the first
loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int m)
{
 int i, j;
 #pragma omp parallel shared(a,b,c,d,n,m) private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++)
 {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }

 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < m; i++)
 {
 for(j = 0; j <= i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)])/2.0;
 }
 }
}

Intel® C++ Compiler for Linux* Systems User's Guide

148

Intel Extensions to OpenMP
Intel Workqueuing Model

The workqueuing model lets you parallelize control structures that are beyond the scope of those
supported by the OpenMP* model, while attempting to fit into the framework defined by
OpenMP. In particular, the workqueuing model is a flexible mechanism for specifying units of
work that are not pre-computed at the start of the worksharing construct. For single, for, and
sections constructs all work units that can be executed are known at the time the construct
begins execution. The workqueuing pragmas taskq and task relax this restriction by specifying an
environment (the taskq) and the units of work (the tasks) separately.

Intel Extensions
The Intel® C++ Compiler implements the following groups of functions as extensions to the
OpenMP* run-time library:

• getting and setting stack size for parallel threads

• memory allocation

The Intel extensions described in this section can be used for low-level debugging to verify that
the library code and application are functioning as intended. It is recommended to use these
functions with caution because using them requires the use of the -openmp_stubs command-
line option to execute the program sequentially. These functions are also generally not recognized
by other vendor's OpenMP-compliant compilers, which may cause the link stage to fail for these
other compilers.

 Note

The functions below require the pre-processor directive #include <omp.h>.

Stack Size
In most cases, directives can be used in place of extensions. For example, the stack size of the
parallel threads may be set using the KMP_STACKSIZE environment variable rather than the
kmp_set_stacksize_s()function.

 Note

A run-time call to an Intel extension takes precedence over the corresponding environment
variable setting. See the definitions of stack size functions in the Stack Size table below.

Memory Allocation
The Intel® C++ Compiler implements a group of memory allocation functions as extensions to the
OpenMP run-time library to enable threads to allocate memory from a heap local to each thread.
These functions are kmp_malloc(), kmp_calloc(), and kmp_realloc(). The memory
allocated by these functions must also be freed by the kmp_free()function. While it is legal for
the memory to be allocated by one thread and kmp_free()'d by a different thread, this mode of
operation has a slight performance penalty. See the definitions of these functions in the Memory
Allocation table below.

Parallel Programming

149

Stack Size

Function Description

kmp_get_stacksize_s() Returns the number of bytes that will be allocated for
each parallel thread to use as its private stack. This
value can be changed with
kmp_set_stacksize_s() prior to the first
parallel region or with the KMP_STACKSIZE
environment variable.

kmp_get_stacksize() This function is provided for backwards compatibility
only. Use kmp_get_stacksize_s() for
compatibility across different families of Intel
processors.

kmp_set_stacksize_s(size) Sets to size the number of bytes that will be allocated
for each parallel thread to use as its private stack. This
value can also be set via the KMP_STACKSIZE
environment variable. In order for
kmp_set_stacksize_s() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the program.

kmp_set_stacksize(size) This function is provided for backward compatibility
only; use kmp_set_stacksize_s() for
compatibility across different families of Intel
processors.

Memory Allocation

Function Description

kmp_malloc(size) Allocate memory block of size bytes from thread-
local heap.

kmp_calloc(nelem, elsize) Allocate array of nelem elements of size elsize
from thread-local heap.

kmp_realloc(ptr, size) Reallocate memory block at address ptr and size
bytes from thread-local heap.

kmp_free(ptr) Free memory block at address ptr from thread-local
heap. Memory must have been previously allocated
with kmp_malloc(), kmp_calloc(), or
kmp_realloc().

Intel® C++ Compiler for Linux* Systems User's Guide

150

Workqueuing Constructs
taskq Pragma

The taskq pragma specifies the environment within which the enclosed units of work (tasks) are
to be executed. From among all the threads that encounter a taskq pragma, one is chosen to
execute it initially. Conceptually, the taskq pragma causes an empty queue to be created by the
chosen thread, and then the code inside the taskq block is executed single-threaded. All the other
threads wait for work to be enqueued on the conceptual queue. The task pragma specifies a unit
of work, potentially executed by a different thread. When a task pragma is encountered lexically
within a taskq block, the code inside the task block is conceptually enqueued on the queue
associated with the taskq. The conceptual queue is disbanded when all work enqueued on it
finishes, and when the end of the taskq block is reached.

Control Structures
Many control structures exhibit the pattern of separated work iteration and work creation, and are
naturally parallelized with the workqueuing model. Some common cases are:

• while loops

• C++ iterators

• recursive functions.

while Loops

If the computation in each iteration of a while loop is independent, the entire loop becomes the
environment for the taskq pragma, and the statements in the body of the while loop become
the units of work to be specified with the task pragma. The conditional in the while loop and
any modifications to the control variables are placed outside of the task blocks and executed
sequentially to enforce the data dependencies on the control variables.

C++ Iterators

C++ Standard Template Library (STL) iterators are very much like the while loops just
described, whereby the operations on the data stored in the STL are very distinct from the act of
iterating over all the data. If the operations are data-independent, they can be done in parallel as
long as the iteration over the work is sequential. This type of while loop parallelism is a
generalization of the standard OpenMP* worksharing for loops. In the worksharing for loops, the
loop increment operation is the iterator and the body of the loop is the unit of work. However,
because the for loop iteration variable frequently has a closed form solution, it can be computed
in parallel and the sequential step avoided.

Recursive Functions

Recursive functions also can be used to specify parallel iteration spaces. The mechanism is similar
to specifying parallelism using the sections pragma, but is much more flexible because it
allows arbitrary code to sit between the taskq and the task pragmas, and because it allows
recursive nesting of the function to build a conceptual tree of taskq queues. The recursive
nesting of the taskq pragmas is a conceptual extension of OpenMP worksharing constructs to
behave more like nested OpenMP parallel regions. Just like nested parallel regions, each nested
workqueuing construct is a new instance and is encountered by exactly one thread. However, the
major difference is that nested workqueuing constructs do not cause new threads or teams to be
formed, but rather re-use the threads from the team. This permits very easy multi-algorithmic
parallelism in dynamic environments, such that the number of threads need not be committed at
each level of parallelism, but instead only at the top level. From that point on, if a large amount of
work suddenly appears at an inner level, the idle threads from the outer level can assist in getting
that work finished. For example, it is very common in server environments to dedicate a thread to
handle each incoming request, with a large number of threads awaiting incoming requests. For a
particular request, its size may not be obvious at the time the thread begins handling it. If the

Parallel Programming

151

thread uses nested workqueuing constructs, and the scope of the request becomes large after the
inner construct is started, the threads from the outer construct can easily migrate to the inner
construct to help finish the request.

Since the workqueuing model is designed to preserve sequential semantics, synchronization is
inherent in the semantics of the taskq block. There is an implicit team barrier at the completion
of the taskq block for the threads that encountered the taskq construct to ensure that all of the
tasks specified inside of the taskq block have finished execution. This taskq barrier enforces
the sequential semantics of the original program. Just like the OpenMP worksharing constructs, it
is assumed you are responsible for ensuring that either no dependences exist or that dependencies
are appropriately synchronized between the task blocks, or between code in a task block and code
in the taskq block outside of the task blocks.

The syntax, semantics, and allowed clauses are designed to resemble OpenMP* worksharing
constructs. Most of the clauses allowed on OpenMP worksharing constructs have a reasonable
meaning when applied to the workqueuing pragmas.

taskq Construct

#pragma intel omp taskq [clause[[,]clause]...]
 structured-block

where clause can be any of the following:

• private (variable-list)

• firstprivate (variable-list)

• lastprivate (variable-list)

• reduction (operator : variable-list)

• ordered

• nowait

private

The private clause creates a private, default-constructed version for each object in
variable-list for the taskq. It also implies captureprivate on each enclosed task.
 The original object referenced by each variable has an indeterminate value upon entry to the
construct, must not be modified within the dynamic extent of the construct, and has an
indeterminate value upon exit from the construct.

firstprivate

The firstprivate clause creates a private, copy-constructed version for each object in
variable-list for the taskq. It also implies captureprivate on each enclosed task.
The original object referenced by each variable must not be modified within the dynamic extent of
the construct and has an indeterminate value upon exit from the construct.

lastprivate

The lastprivate clause creates a private, default-constructed version for each object in
variable-list for the taskq. It also implies captureprivate on each enclosed task.
The original object referenced by each variable has an indeterminate value upon entry to the
construct, must not be modified within the dynamic extent of the construct, and is copy-assigned
the value of the object from the last enclosed task after that task completes execution.

reduction

The reduction clause performs a reduction operation with the given operator in enclosed task
constructs for each object in variable-list. operator and variable-list are defined
the same as in the OpenMP Specifications.

Intel® C++ Compiler for Linux* Systems User's Guide

152

ordered

The ordered clause performs ordered constructs in enclosed task constructs in original
sequential execution order. The taskq directive, to which the ordered is bound, must have an
ordered clause present.

nowait

The nowait clause removes the implied barrier at the end of the taskq. Threads may exit the
taskq construct before completing all the task constructs queued within it.

task Construct

#pragma intel omp task [clause[[,]clause]...]
 structured-block

where clause can be any of the following:

• private(variable-list)

• captureprivate(variable-list)

private

The private clause creates a private, default-constructed version for each object in
variable-list for the task. The original object referenced by the variable has an
indeterminate value upon entry to the construct, must not be modified within the dynamic extent
of the construct, and has an indeterminate value upon exit from the construct.

captureprivate

The captureprivate clause creates a private, copy-constructed version for each object in
variable-list for the task at the time the task is enqueued. The original object referenced
by each variable retains its value but must not be modified within the dynamic extent of the task
construct.

Combined parallel and taskq Construct

#pragma intel omp parallel taskq [clause[[,]clause]...]
 structured-block

where clause can be any of the following:

• if(scalar-expression)

• num_threads(integer-expression)

• copyin(variable-list)

• default(shared | none)

• shared(variable-list)

• private(variable-list)

• firstprivate(variable-list)

• lastprivate(variable-list)

• reduction(operator : variable-list)

• ordered

Clause descriptions are the same as for the OpenMP parallel construct or the taskq
construct above as appropriate.

Parallel Programming

153

Example Function
The test1 function below is a natural candidate to be parallelized using the workqueuing model.
You can express the parallelism by annotating the loop with a parallel taskq pragma and the
work in the loop body with a task pragma. The parallel taskq pragma specifies an environment
for the while loop in which to enqueue the units of work specified by the enclosed task
pragma. Thus, the loop�s control structure and the enqueuing are executed single-threaded, while
the other threads in the team participate in dequeuing the work from the taskq queue and
executing it. The captureprivate clause ensures that a private copy of the link pointer p is
captured at the time each task is being enqueued, hence preserving the sequential semantics.

void test1(LIST p)
{
 #pragma intel omp parallel taskq shared(p)
 {
 while (p != NULL)
 {
 #pragma intel omp task captureprivate(p)
 {
 do_work1(p);
 }
 p = p->next;
 }
 }
}

154

Optimization Support Features
This section describes language extensions to the Intel® C++ Compiler that let you optimize your
source code directly. Examples are included of optimizations supported by Intel extended
directives and library routines that enhance and/or help analyze performance.

Compiler Directives
This section discusses the language extended directives used in:

• Software Pipelining

• Loop Count and Loop Distribution

• Loop Unrolling

• Prefetching

• Vectorization

Pipelining for Itanium®-based Applications
The swp and noswp directives indicate preference for a loop to get software-pipelined or not.
The swp directive does not help data dependence, but overrides heuristics based on profile counts
or lop-sided control flow. The syntax for this directive is:

#pragma swp
#pragma noswp

Example of swp Directive

#pragma swp
for (i=0; i<m ; i++)
{
 if (a[i]==0)
 {
 b[i]=a[i]+1;
 }
 else
 {
 b[i]=a[i]*2;
 }
}

The software pipelining optimization triggered by the swp directive applies instruction scheduling
to certain innermost loops, allowing instructions within a loop to be split into different stages,
allowing increased instruction level parallelism. This can reduce the impact of long-latency
operations, resulting in faster loop execution. Loops chosen for software pipelining are always
innermost loops that do not contain procedure calls that are not inlined. Because the optimizer no
longer considers fully unrolled loops as innermost loops, fully unrolling loops can allow an
additional loop to become the innermost loop. You can request and view the optimization report to
see whether software pipelining was applied (see Optimizer Report Generation).

Optimization Support Features

155

Loop Count and Loop Distribution
loop count (n) Directive

The loop count (n) directive indicates the loop count is likely to be n. The syntax for this
directive is:

#pragma loop count (n)

where n is an integer constant. The value of loop count affects heuristics used in software
pipelining, vectorization and loop-transformations.

Example of loop count (n) Directive

#pragma loop count (10000)

for(i=0; i<m; i++)
{
 //swp likely to occur in this loop
 a[i]=b[i]+1.2;
}

distribute point Directive
The distribute point directive indicates to the compiler a preference of performing loop
distribution. The syntax for this directive is:

#pragma distribute point

Loop distribution may cause large loops be distributed into smaller ones. This may enable
software pipelining for more loops. If the directive is placed inside a loop, the distribution is
performed after the directive and any loop-carried dependency is ignored. If the directive is placed
before a loop, the compiler will determine where to distribute and data dependency is observed.
Only one distribute directive is supported when placed inside the loop.

Example of distribute point Directive

#pragma distribute point

for(i=1; i<m; i++)
{
 b[i]=a[i]+1;

 ...

 //Compiler will automatically
 //decide where to distribute.
 //Data dependency is observed.

 c[i]=a[i]+b[i];

 ...

 d[i]=c[i]+1;
}

for(i=1; i<m; i++)
{
 b[i]=a[i]+1;

 ...

 #pragma distribute point

Intel® C++ Compiler for Linux* Systems User's Guide

156

 //Distribution will start here,
 //ignoring all loop-carried dependency.

 sub(a,n);
 c[i]=a[i]+b[i];

 ...

 d[i]=c[i]+1;
}

Loop Unrolling Support
unroll Directive

The unroll directive (unroll(n)|nounroll) tells the compiler how many times to unroll a
counted loop. The syntax for this directive is:

#pragma unroll
#pragma unroll(n)
#pragma nounroll

where n is an integer constant from 0 through 255. The unroll directive must precede the for
statement for each for loop it affects. If n is specified, the optimizer unrolls the loop n times. If n
is omitted, or if it is outside the allowed range, the optimizer assigns the number of times to unroll
the loop. The unroll directive overrides any setting of loop unrolling from the command line.
The directive can be applied only for the innermost nested loop. If applied to the outer loops, it is
ignored. The compiler generates correct code by comparing n and the loop count.

Example of unroll Directive

#pragma unroll(4)

for(i=1; i<m; i++)
{
 b[i]=a[i]+1;
 d[i]=c[i]+1;
}

Prefetching Support
prefetch Directive

The prefetch and noprefetch directives assert that the data prefetches are generated or not
generated for some memory references. This affects the heuristics used in the compiler. The
syntax for this directive is:

#pragma noprefetch
#pragma prefetch
#pragma prefetch a,b

If the expression a[j] is used within a loop, by placing prefetch a in front of the loop, the
compiler will insert prefetches for a[j+d] within the loop, where d is determined by the
compiler. This directive is supported when option -O3 is on.

Optimization Support Features

157

Example of prefetch Directive

#pragma noprefetch b
#pragma prefetch a

for(i=0; i<m; i++)
{
 a[i]=b[i]+1;
}

Vectorization Support (IA-32)
The vector directives control the vectorization of the subsequent loop in the program, but the
compiler does not apply them to nested loops. Each nested loop needs its own directive preceding
it. You must place the vector directive before the loop control statement.

vector always Directive
The vector always directive instructs the compiler to override any efficiency heuristic during
the decision to vectorize or not, and will vectorize non-unit strides or very unaligned memory
accesses.

Example of vector always Directive

#pragma vector always

for(i=0; i<=N; i++)
{
 a[32*i]=b[99*i];
}

ivdep Directive
The ivdep directive instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This directive overrides that decision. Use ivdep only when you know that the
assumed loop dependences are safe to ignore. The loop in the example below will not vectorize
with the ivdep, since the value of k is not known (vectorization would be illegal if k<0).

Example of ivdep Directive

#pragma ivdep

for(i=0; i<m; i++)
{
 a[i]=a[i+k]*c;
}

vector aligned Directive
The vector aligned directive means the loop should be vectorized, if it is legal to do so,
ignoring normal heuristic decisions about profitability. When the aligned or unaligned
qualifier is used, the loop should be vectorized using aligned or unaligned operations.
Specify either aligned or unaligned, but not both.

 Caution

If you specify aligned as an argument, you must be absolutely sure that the loop will be
vectorizable using this instruction. Otherwise, the compiler will generate incorrect code. The loop
in the example below uses the aligned qualifier to request that the loop be vectorized with

Intel® C++ Compiler for Linux* Systems User's Guide

158

aligned instructions, as the arrays are declared in such a way that the compiler could not
normally prove this would be safe to do so.

Example of vector aligned Directive

#void foo(float *a)
{
 #pragma vector aligned
 for(i=0; i<m; i++)
 {
 a[i]=a[i]*c;
 }
}

The compiler includes several alignment strategies in case the alignment of data structures is not
known at compile time. A simple example is shown below, but several other strategies are
supported as well. If, in the loop shown below, the alignment of a is unknown, the compiler will
generate a prelude loop that iterates until the array reference that occurs the most hits an aligned
address. This makes the alignment properties of a known, and the vector loop is optimized
accordingly.

Example of Alignment Strategies

float *a;

//Alignment unknown
for(i=0; i<100; i++)
{
 a[i]=a[i]+1.0f;
}

//Dynamic loop peeling
p=a & 0x0f;
if(p!=0)
{
 p=(16-p)/4;
 for(i=0; i<p; i++)
 {
 a[i]=a[i]+1.0f;
 }
}

//Loop with a aligned.
//Will be vectorized accordingly.
for(i=p; i<100; i++)
{
 a[i]=a[i]+1.0f;
}

novector Directive
The novector directive specifies that the loop should never be vectorized, even if it is legal to
do so. In this example, suppose you know the trip count (ub - lb) is too low to make
vectorization worthwhile. You can use novector to tell the compiler not to vectorize, even if the
loop is considered vectorizable.

Optimization Support Features

159

Example of novector Directive

void foo(int lb, int ub)
{
 #pragma novector
 for(j=lb; j<ub; j++)
 {
 a[j]=a[j]+b[j];
 }
}

Optimizer Report Generation
The Intel® C++ Compiler provides options to generate and manage optimization reports:

• -opt_report generates an optimization report and directs it to stderr. By default, the
compiler does not generate optimization reports.

• -opt_report_filefilename generates an optimization report and directs it to a file
specified in filename.

• -opt_report_level{min|med|max} specifies the detail level of the optimization
report. The min argument provides the minimal summary and max produces the full report.
The default is -opt_report_levelmin.

• -opt_report_routinefileroutine_substring generates reports from all
routines with names containing the substring as part of their name. If not specified,
reports from all routines are generated. By default, the compiler generates reports for all
routines.

Specifying Optimizations to Generate Reports
The compiler can generate reports for an optimizer you specify in the phase argument of the -
opt_report_phasephase option. The option can be used multiple times on the same
command line to generate reports for multiple optimizers. Currently, the following optimizer
reports are supported.

Optimizer
Logical
Name

Optimizer Full Name

ipo Interprocedural Optimizer

hlo High Level Optimizer

ilo Intermediate Language Scalar Optimizer

ecg Code Generator

omp Open MP

all All phases

When one of the above logical names for optimizers is specified, all reports from that optimizer
are generated. For example, -opt_report_phaseipo -opt_report_phaseecg
generates reports from the interprocedural optimizer and the code generator.

Intel® C++ Compiler for Linux* Systems User's Guide

160

Each of the optimizers can potentially have specific optimizations within them. Each of these
optimizations are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

ipo_inline Interprocedural Optimizer, inline expansion of functions

ipo_constant_propagation Interprocedural Optimizer, constant propagation

ipo_function_reorder Interprocedural Optimizer, function reorder

ilo_constant_propagation Intermediate Language Scalar Optimizer, constant
propagation

ilo_copy_propagation Intermediate Language Scalar Optimizer, copy
propagation

ecg_software_pipelining Code Generator, software pipelining

All optimization reports that have a matching prefix with the specified optimizer are generated.
For example, if -opt_report_phase ilo_co is specified, a report from both the constant
propagation and the copy propagation are generated.

The Availability of Report Generation
The -opt_report_help option lists the logical names of optimizers available for report
generation.

Timing Your Application
How fast your application executes is one indication of performance. When timing the speed of
applications, consider the following circumstances:

• Run program timings when other users are not active. Your timing results can be affected by
one or more CPU-intensive processes also running while doing your timings.

• Try to run the program under the same conditions each time to provide the most accurate
results, especially when comparing execution times of a previous version of the same
program. Use the same system (processor model, amount of memory, version of the
operating system, and so on) if possible.

• If you do need to change systems, you should measure the time using the same version of
the program on both systems, so you know each system's effect on your timings.

• For programs that run for less than a few seconds, run several timings to ensure that the
results are not misleading. Certain overhead functions, like loading external programs, might
influence short timings considerably.

• If your program displays a lot of text, consider redirecting the output from the program.
Redirecting output from the program will change the times reported because of reduced
screen I/O.

Optimization Support Features

161

The following program illustrates a model for program timing:

/* Sample Timing */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void)
{
 clock_t start, finish;
 long loop;
 double duration, loop_calc;
 start = clock();
 for(loop=0; loop <= 2000; loop++)
 {
 loop_calc = 123.456 * 789;

 //printf() inculded to facilitate example
 printf("\nThe value of loop is: %d", loop);
 }
 finish = clock();
 duration = (double)(finish - start)/CLOCKS_PER_SEC;
 printf("\n%2.3f seconds\n", duration);
}

162

Compiler Limits
The table below shows the size or number of each item that the compiler can process. All
capacities shown in the table are tested values; the actual number can be greater than the number
shown.

Item Tested Values

Control structure nesting (block nesting) 512

Conditional compilation nesting 512

Declarator modifiers 512

Parenthesis nesting levels 512

Significant characters, internal identifier 2048

External identifier name length 64K

Number of external identifiers/file 128K

Number of identifiers in a single block 2048

Number of macros simultaneously defined 128K

Number of parameters to a function call 512

Number of parameters per macro 512

Number of characters in a string 128K

Bytes in an object 512K

Include file nesting depth 512

Case labels in a switch 32K

Members in one structure or union 32K

Enumeration constants in one enumeration 8192

Levels of structure nesting 320

Size of arrays 2 GB

163

Key Files
Key Files Summary for IA-32 Compiler

The following tables list and briefly describe files that are installed for use by the IA-32 version of
the compiler.

/bin Files
File Description

codecov Code-coverage tool

iccvars.sh Batch file to set environment variables

icc.cfg Configuration file for use from command line

icc
icpc

Intel® C++ Compiler

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

tselect Test-prioritization tool

xiar Tool used for Interprocedural Optimizations

xild Tool used for Interprocedural Optimizations

/include Files
File Description

dvec.h SSE 2 intrinsics for Class Libraries

emm_func.h Header file for SSE2 intrinsics (used by emmintrin.h)

emmintrin.h Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard float.h

fvec.h SSE intrinsics for Class Libraries

iso646.h Standard header file

ivec.h MMX� instructions intrinsics for Class Libraries

Intel® C++ Compiler for Linux* Systems User's Guide

164

File Description

limits.h Standard header file

mathf.h Principal header file for legacy Intel Math Library

mathimf.h Principal header file for current Intel Math Library

mmintrin.h Intrinsics for MMX instructions

omp.h Principal header file OpenMP*

omp_lib.h Header file for OpenMP

pgouser.h For use in the instrumentation compilation phase of profile-guided
optimizations

pmmintrin.h Principal header file for Streaming SIMD Extensions 3 intrinsics

proto.h

sse2mmx.h Principal header file for Streaming SIMD Extensions 2 intrinsics

stdarg.h Replacement header for standard stdarg.h

stdbool.h Defines _Bool keyword

stddef.h Standard header file

syslimits.h

varargs.h Replacement header for standard varargs.h

xarg.h Header file used by stdargs.h and varargs.h

xmm_func.h Header file for Streaming SIMD Extensions

xmm_utils.h Utilities for Streaming SIMD Extensions

xmmintrin.h Principal header file for Streaming SIMD Extensions intrinsics

Key Files

165

/lib Files
Library Description

libguide.a
libguide.so

For OpenMP* implementation

libguide_stats.a
libguide_stats.so

OpenMP static library for the parallelizer tool with performance
statistics and profile information

libompstub.a Library that resolves references to OpenMP subroutines when
OpenMP is not in use

libsvml.a Short vector math library

libirc.a Intel support library for PGO and CPU dispatch

libircmt.a Mulit-thread version on libirc.a

libimf.a Intel math library

libimf.so Intel math library

libcprts.a
libcprts.so
libcprts.so.3

Dinkumware* C++ Library

libunwind.a
libunwind.so
libunwind.so.3

Unwinder library

libcxa.a
libcxa.so
libcxa.so.3

Intel run time support for C++ features

libcxaguard.a
libcxaguard.so
libcxaguard.so.3

Used for interoperability support with the -cxxlib-gcc option.
See gcc Interoperability.

Intel® C++ Compiler for Linux* Systems User's Guide

166

Key Files Summary for Itanium® Compiler
The following tables list and briefly describe files that are installed for use by the Itanium®
compiler.

/bin Files
File Description

codecov Code-coverage tool

iccvars.sh Batch file to set environment variables

icc.cfg Configuration file for use from command line

icc
icpc

Intel® C++ Compiler

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

tselect Test-prioritization tool

xiar Tool used for Interprocedural Optimizations

xild Tool used for Interprocedural Optimizations

/include Files
File Description

emmintrin.h Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard float.h

fvec.h SSE intrinsics for Class Libraries

ia64intrin.h

ia64regs.h Standard header file

iso646.h Standard header file

ivec.h MMX� instructions intrinsics for Class Libraries

limits.h Standard header file

mathimf.h Principal header file for current Intel Math Library

mmintrin.h Intrinsics for MMX instructions

Key Files

167

File Description

omp.h Principal header file OpenMP*

pgouser.h For use in the instrumentation compilation phase of profile-guided
optimizations

proto.h

sse2mmx.h Principal header file for Streaming SIMD Extensions 2 intrinsics

stdarg.h Replacement header for standard stdarg.h

stdbool.h Defines _Bool keyword

stddef.h Standard header file

syslimits.h

varargs.h Replacement header for standard varargs.h

xarg.h Header file used by stdargs.h and varargs.h

xmmintrin.h Principal header file for Streaming SIMD Extensions intrinsics

/lib Files
File Description

libcprts.a C++ standard language library

libcxa.so C++ language library indicating I/O data location

libirc.a Intel-specific library (optimizations)

libm.a Math library

libguide.a OpenMP library

libguide.so Shared OpenMP library

libmofl.a Multiple Object Format Library, used by the Intel assembler

libmofl.so Shared Multiple Object Format Library, used by the Intel assembler

libunwinder.a Unwinder library

libintrins.a Intrinsic functions library

168

Diagnostics and Messages
This section describes the various messages that the compiler produces. These messages include
the sign-on message and diagnostic messages for remarks, warnings, or errors. The compiler
always displays any diagnostic message, along with the erroneous source line, on the standard
output.

This section also describes how to control the severity of diagnostic messages.

Diagnostic Messages
Option Description

-w0 Display errors (same as -w)

-w1 Display warnings and errors (DEFAULT)

-w2 Display remarks, warnings, and errors

Language Diagnostics
These messages describe diagnostics that are reported during the processing of the source file.
These diagnostics have the following format:

filename (linenum): type [#nn]: message

filename Indicates the name of the source file currently being processed.

linenum Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or
catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or
catastrophes are not assigned a number.

message Describes the diagnostic.

The following is an example of a warning message:

tantst.cpp(3): warning #328: Local variable "increment" never
used.

The compiler can also display internal error messages on the standard error. If your compilation
produces any internal errors, contact your Intel representative. Internal error messages are in the
following form:

FATAL COMPILER ERROR: message

Diagnostics and Messages

169

Suppressing Warning Messages with lint
Comments

The UNIX lint program attempts to detect features of a C or C++ program that are likely to be
bugs, non-portable, or wasteful. The compiler recognizes three lint-specific comments:

1. /*ARGSUSED*/

2. /*NOTREACHED*/

3. /*VARARGS*/

Like the lint program, the compiler suppresses warnings about certain conditions when you
place these comments at specific points in the source.

Suppressing Warning Messages or Enabling
Remarks

Use the -w or -Wn option to suppress warning messages or to enable remarks during the
preprocessing and compilation phases. You can enter the option with one of the following
arguments:

Option Description

-w0 Display only errors (same as -w)

-w1 Display warnings and errors (DEFAULT)

-w2 Display remarks, warnings, and errors

For some compilations, you might not want warnings for known and benign characteristics, such
as the K&R C constructs in your code. For example, the following command compiles
newprog.cpp and displays compiler errors, but not warnings:

prompt>icpc -W0 newprog.cpp

Use the -ww, -we, or -wd option to indicate specific diagnostics.

Option Description

-wwL1[L2,...,Ln] Changes the severity of diagnostics L1 through Ln to warning.

-weL1[L2,...,Ln] Changes the severity of diagnostics L1 through Ln to error.

-wdL1[L2,...,Ln] Disables diagnostics L1 through Ln.

Example

/* test.c */

int main()
{
 int x=0;
}

Intel® C++ Compiler for Linux* Systems User's Guide

170

If you compile test.c (above) using the -Wall option (enable all warnings), the compiler will
emit warning #177:

prompt>icc -Wall test.c
remark #177: variable 'x' was declared but never referenced

To disable warning #177, use the -wd option:
prompt>icc -Wall -wd177 test.c

Likewise, using the -we option will result in a compile-time error:

prompt>icc -Wall -we177 test.c
error #177: variable 'x' was declared but never referenced
compilation aborted for test.c

Limiting the Number of Errors Reported
Use the -wnn option to limit the number of error messages displayed before the compiler aborts.
By default, if more than 100 errors are displayed, compilation aborts.

Option Description

-wnn/i Limit the number of error diagnostics that will be displayed prior to aborting
compilation to n. Remarks and warnings do not count towards this limit.

For example, the following command line specifies that if more than 50 error messages are
displayed during the compilation of a.cpp, compilation aborts.

prompt>icpc -wn50 -c a.cpp

Remark Messages
These messages report common, but sometimes unconventional, use of C or C++. The compiler
does not print or display remarks unless you specify level 4 for the -W option, as described in
Suppressing Warning Messages or Enabling Remarks. Remarks do not stop translation or linking.
Remarks do not interfere with any output files. The following are some representative remark
messages:

• function declared implicitly

• type qualifiers are meaningless in this declaration

• controlling expression is constant

171

Intel Math Library
The Intel® C++ Compiler includes a mathematical software library containing highly optimized
and very accurate mathematical functions. These functions are commonly used in scientific or
graphic applications, as well as other programs that rely heavily on floating-point computations.
Support for C99 _Complex data types is included by using the -c99 compiler option. The
mathimf.h header file includes prototypes for the library functions. See Using the Intel Math
Library. For a complete list of the functions available, refer to the Function List in this section.

Math Libraries for IA-32 and Itanium®-based Systems
The math library linked to an application depends on the compilation or linkage options specified.
Refer to the table below:

Library Description

libimf.a Default static math library.

libimf.so Default shared math library.

Intel® C++ Compiler for Linux* Systems User's Guide

172

Using the Intel Math Library
To use the Intel math library, include the header file, mathimf.h, in your program. Below, are
two example programs that illustrate the use of the math library.

Example Using Real Functions
// real_math.c

#include <stdio.h>
#include <mathimf.h>

int main() {

float fp32bits;
double fp64bits;
long double fp80bits;
long double pi_by_four = 3.141592653589793238/4.0;

// pi/4 radians is about 45 degrees.

fp32bits = (float) pi_by_four; // float approximation to pi/4
fp64bits = (double) pi_by_four; // double approximation to
pi/4
fp80bits = pi_by_four; // long double (extended)
approximation to pi/4

// The sin(pi/4) is known to be 1/sqrt(2) or approximately
.7071067

printf("When x = %8.8f, sinf(x) = %8.8f \n", fp32bits,
sinf(fp32bits));
printf("When x = %16.16f, sin(x) = %16.16f \n", fp64bits,
sin(fp64bits));
printf("When x = %20.20Lf, sinl(x) = %20.20f \n", fp80bits,
sinl(fp80bits));

return 0;
}

Since the example program above includes the long double data type, be sure to include the -
long_double compiler option:
prompt>icc -long_double real_math.c

The output of a.out will look like this:

When x = 0.78539816, sinf(x) = 0.70710678
When x = 0.7853981633974483, sin(x) = 0.7071067811865475
When x = 0.78539816339744827900, sinl(x) =
0.70710678118654750275

Intel Math Library

173

Example Using Complex Functions
// complex_math.c

#include <stdio.h>
#include <mathimf.h>

int main()
{

float _Complex c32in,c32out;
double _Complex c64in,c64out;
double pi_by_four= 3.141592653589793238/4.0;

c64in = 1.0 + __I__* pi_by_four;

// Create the double precision complex number 1 + (pi/4) * i
// where i is the imaginary unit.

c32in = (float _Complex) c64in;

// Create the float complex value from the double complex
value.

c64out = cexp(c64in);
c32out = cexpf(c32in);

// Call the complex exponential,
// cexp(z) = cexp(x+iy) = e^ (x + i y) = e^x * (cos(y) + i
sin(y))

printf("When z = %7.7f + %7.7f i, cexpf(z) = %7.7f + %7.7f i
\n"
,crealf(c32in),cimagf(c32in),crealf(c32out),cimagf(c32out));
printf("When z = %12.12f + %12.12f i, cexp(z) = %12.12f +
%12.12f i \n"
,creal(c64in),cimag(c64in),creal(c64out),cimagf(c64out));

return 0;
}

prompt>icc complex_math.c

The output of a.out will look like this:

When z = 1.0000000 + 0.7853982 i, cexpf(z) = 1.9221154 +
1.9221156 i
When z = 1.000000000000 + 0.785398163397 i, cexp(z) =
1.922115514080 + 1.922115514080 i

 Note

_Complex data types are supported in C but not in C++ programs.

Intel® C++ Compiler for Linux* Systems User's Guide

174

Exception Conditions
If you call a math function using argument(s) that may produce undefined results, an error number
is assigned to the system variable errno. Math function errors are usually domain errors or range
errors.

Domain errors result from arguments that are outside the domain of the function. For example,
acos is defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(-
2) or acos(3) results in a domain error, where the return value is QNaN.

Range errors occur when a mathematically valid argument results in a function value that
exceeds the range of representable values for the floating-point data type. Attempting to evaluate
exp(1000) results in a range error, where the return value is INF.

When domain or range error occurs, the following values are assigned to errno:

• domain error (EDOM): errno = 33

• range error (ERANGE): errno = 34

The following example shows how to read the errno value for an EDOM and ERANGE error.

// errno.c

#include <errno.h>
#include <mathimf.h>
#include <stdio.h>

int main(void)
{
 double neg_one=-1.0;
 double zero=0.0;

 // The natural log of a negative number is considered a
domain error - EDOM
 printf("log(%e) = %e and errno(EDOM) = %d
\n",neg_one,log(neg_one),errno);

 // The natural log of zero is considered a range error -
ERANGE
 printf("log(%e) = %e and errno(ERANGE) = %d
\n",zero,log(zero),errno);
}

The output of errno.c will look like this:

log(-1.000000e+00) = nan and errno(EDOM) = 33
log(0.000000e+00) = -inf and errno(ERANGE) = 34

For the math functions in this section, a corresponding value for errno is listed when applicable.

Intel Math Library

175

Other Considerations
Some math functions are inlined automatically by the compiler. The functions actually inlined
may vary and may depend on any vectorization or processor-specific compilation options used.
For more information, see Criteria for Inline Expansion of Functions.

A change of the default precision control or rounding mode may affect the results returned by
some of the mathematical functions. See Floating-point Arithmetic Precision.

Depending on the data types used, some important compiler options include:

• -long_double: Use this option when compiling programs that require support for the
long double data type (80-bit floating-point). Without this option, compilation will be
successful, but long double data types will be mapped to double data types.

• -c99: Use this option when compiling programs that require support for _Complex data
types.

Intel® C++ Compiler for Linux* Systems User's Guide

176

Math Functions
Trigonometric Functions

The Intel Math library supports the following trigonometric functions:

ACOS
Description: The acos function returns the principal value of the inverse
cosine of x in the range [0, pi] radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acos(double x);
long double acosl(long double x);
float acosf(float x);

ACOSD
Description: The acosd function returns the principal value of the inverse
cosine of x in the range [0,180] degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acosd(double x);
long double acosdl(long double x);
float acosdf(float x);

ASIN
Description: The asin function returns the principal value of the inverse sine
of x in the range [-pi/2, +pi/2] radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asin(double x);
long double asinl(long double x);
float asinf(float x);

ASIND
Description: The asind function returns the principal value of the inverse sine
of x in the range [-90,90] degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asind(double x);
long double asindl(long double x);
float asindf(float x);

ATAN
Description: The atan function returns the principal value of the inverse
tangent of x in the range [-pi/2, +pi/2] radians.

Calling interface:
double atan(double x);
long double atanl(long double x);
float atanf(float x);

Intel Math Library

177

ATAN2
Description: The atan2 function returns the principal value of the inverse
tangent of y/x in the range [-pi, +pi] radians.

errno: EDOM, for x = 0 and y=0

Calling interface:
double atan2(double x, double y);
long double atan2l(long double x, long double y);
float atan2f(float x, float y);

ATAND
Description: The atand function returns the principal value of the inverse
tangent of x in the range [-90,90] degrees.

Calling interface:
double atand(double x);
long double atandl(long double x);
float atandf(float x);

ATAN2D
Description: The atan2d function returns the principal value of the inverse
tangent of y/x in the range [-180, +180] degrees.

errno: EDOM, for x = 0

Calling interface:
double atan2d(double x, double y);
long double atan2dl(long double x, long double y);
float atan2df(float x, float y);

COS
Description: The cos function returns the cosine of x measured in radians.
This function may be inlined with the Itanium® compiler.

Calling interface:
double cos(double x);
long double cosl(long double x);
float cosf(float x);

COSD
Description: The cosd function returns the cosine of x measured in degrees.

Calling interface:
double cosd(double x);
long double cosdl(long double x);
float cosdf(float x);

COT
Description: The cot function returns the cotangent of x measured in radians.

errno: ERANGE, for overflow conditions

Calling interface:
double cot(double x);
long double cotl(long double x);
float cotf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

178

COTD
Description: The cotd function returns the cotangent of x measured in
degrees.

errno: ERANGE, for overflow conditions

Calling interface:
double cotd(double x);
long double cotdl(long double x);
float cotdf(float x);

SIN
Description: The sin function returns the sine of x measured in radians. This
function may be inlined with the Itanium® compiler.

Calling interface:
double sin(double x);
long double sinl(long double x);
float sinf(float x);

SINCOS
Description: The sincos function returns both the sine and cosine of x
measured in radians. This function may be inlined with the Itanium® compiler.

Calling interface:
void sincos(double x, double *sinval, double *cosval);
void sincosl(long double x, long double *sinval, long
double *cosval);
void sincosf(float x, float *sinval, float *cosval);

SINCOSD
Description: The sincosd function returns both the sine and cosine of x
measured in degrees.

Calling interface:
void sincosd(double x, double *sinval, double
*cosval);
void sincosdl(long double x, long double *sinval, long
double *cosval);
void sincosdf(float x, float *sinval, float *cosval);

SIND
Description: The sind function computes the sine of x measured in degrees.

Calling interface:
double sind(double x);
long double sindl(long double x);
float sindf(float x);

TAN
Description: The tan function returns the tangent of x measured in radians.

Calling interface:
double tan(double x);
long double tanl(long double x);
float tanf(float x);

Intel Math Library

179

TAND
Description: The tand function returns the tangent of x measured in degrees.

errno: ERANGE, for overflow conditions

Calling interface:
double tand(double x);
long double tandl(long double x);
float tandf(float x);

Hyperbolic Functions
The Intel Math library supports the following hyperbolic functions:

ACOSH
Description: The acosh function returns the inverse hyperbolic cosine of x.

errno: EDOM, for x < 1

Calling interface:
double acosh(double x);
long double acoshl(long double x);
float acoshf(float x);

ASINH
Description: The asinh function returns the inverse hyperbolic sine of x.

Calling interface:
double asinh(double x);
long double asinhl(long double x);
float asinhf(float x);

ATANH
Description: The atanh function returns the inverse hyperbolic tangent of x.

errno: EDOM, for x < 1
errno: ERANGE, for x = 1

Calling interface:
double atanh(double x);
long double atanhl(long double x);
float atanhf(float x);

COSH
Description: The cosh function returns the hyperbolic cosine of x, (ex + e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double cosh(double x);
long double coshl(long double x);
float coshf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

180

SINH
Description: The sinh function returns the hyperbolic sine of x, (ex - e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double sinh(double x);
long double sinhl(long double x);
float sinhf(float x);

SINHCOSH
Description: The sinhcosh function returns both the hyperbolic sine and
hyperbolic cosine of x.

errno: ERANGE, for overflow conditions

Calling interface:
void sinhcosh(double x, float *sinval, float *cosval);
void sinhcoshl(long double x, long double *sinval,
long double *cosval);
void sinhcoshf(float x, float *sinval, float *cosval);

TANH
Description: The tanh function returns the hyperbolic tangent of x, (ex - e-x) /
(ex + e-x).

Calling interface:
double tanh(double x);
long double tanhl(long double x);
float tanhf(float x);

Exponential Functions
The Intel Math library supports the following exponential functions:

CBRT
Description: The cbrt function returns the cube root of x.

Calling interface:
double cbrt(double x);
long double cbrtl(long double x);
float cbrtf(float x);

EXP
Description: The exp function returns e raised to the x power, ex. This
function may be inlined by the Itanium® compiler.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp(double x);
long double expl(long double x);
float expf(float x);

Intel Math Library

181

EXP10
Description: The exp10 function returns 10 raised to the x power, 10x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp10(double x);
long double exp10l(long double x);
float exp10f(float x);

EXP2
Description: The exp2 function returns 2 raised to the x power, 2x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp2(double x);
long double exp2l(long double x);
float exp2f(float x);

EXPM1
Description: The expm1 function returns e raised to the x power minus 1, ex -
1.

errno: ERANGE, for overflow conditions

Calling interface:
double expm1(double x);
long double expm1l(long double x);
float expm1f(float x);

FREXP
Description: The frexp function converts a floating-point number x into
signed normalized fraction in [1/2, 1) multiplied by an integral power of two.
The signed normalized fraction is returned, and the integer exponent stored at
location exp.

Calling interface:
double frexp(double x, int *exp);
long double frexp(long double x, int *exp);
float frexpf(float x, int *exp);

HYPOT
Description: The hypot function returns the square root of (x2 + y2).

errno: ERANGE, for overflow conditions

Calling interface:
double hypot(double x, double y);
long double hypotl(long double x, long double y);
float hypotf(float x, float y);

Intel® C++ Compiler for Linux* Systems User's Guide

182

ILOGB
Description: The ilogb function returns the exponent of x base two as a
signed int value.

errno: ERANGE, for x = 0

Calling interface:
int ilogb(double x);
int ilogbl(long double x);
int ilogbf(float x);

LDEXP
Description: The ldexp function returns x*2exp, where exp is an integer
value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);
float ldexpf(float x, int exp);

LOG
Description: The log function returns the natural log of x, ln(x). This
function may be inlined by the Itanium® compiler.

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log(double x);
long double logl(long double x);
float logf(float x);

LOG10
Description: The log10 function returns the base-10 log of x, log10(x). This
function may be inlined by the Itanium® compiler.

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log10(double x);
long double log10l(long double x);
float log10f(float x);

LOG1P
Description: The log1p function returns the natural log of (x+1), ln(x +
1).

errno: EDOM, for x < -1
errno: ERANGE, for x = -1

Calling interface:
double log1p(double x);
long double log1pl(long double x);
float log1pf(float x);

Intel Math Library

183

LOG2
Description: The log2 function returns the base-2 log of x, log2(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log2(double x);
long double log2l(long double x);
float log2f(float x;

LOGB
Description: The logb function returns the signed exponent of x.

errno: EDOM, for x = 0

Calling interface:
double logb(double x);
long double logbl(long double x);
float logbf(float x);

POW
Description: The pow function returns x raised to the power of y, xy.

Calling interface:

errno: EDOM, for x = 0 and y < 0
errno: EDOM, for x < 0 and y is a non-integer
errno: ERANGE, for overflow conditions

double pow(double x, double y);
long double powl(double x, double y);
float powf(float x, float y);

SCALB
Description: The scalb function returns x*2y, where y is a floating-point
value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalb(double x, double y);
long double scalbl(long double x, long double y);
float scalbf(float x, float y);

SCALBN
Description: The scalbn function returns x*2n, where n is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbn(double x, int n);
long double scalbnl (long double x, int n);
float scalbnf(float x, int n);

Intel® C++ Compiler for Linux* Systems User's Guide

184

SCALBLN
Description: The scalbln function returns x*2n, where n is a long integer
value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbln(double x, long int n);
long double scalblnl (long double x, long int n);
float scalblnf(float x, long int n);

SQRT
Description: The sqrt function returns the correctly rounded square root.

errno: EDOM, for x < 0

Calling interface:
double sqrt(double x);
long double sqrtl(long double x);
float sqrtf(float x);

Special Functions
The Intel Math library supports the following special functions:

ANNUITY
Description: The annuity function computes the present value factor for an
annuity, (1 - (1+x)(-y)) / x, where x is a rate and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double annuity(double x, double y);
long double annuity(double x, double y);
float annuityf(float x, double y);

COMPOUND
Description: The compound function computes the compound interest factor,
(1+x)y, where x is a rate and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double compound(double x, double y);
long double compound(double x, double y);
float compoundf(float x, double y);

ERF
Description: The erf function returns the error function value.

Calling interface:
double erf(double x);
long double erfl(long double x);
float erff(float x);

Intel Math Library

185

ERFC
Description: The erfc function returns the complementary error function
value.

errno: ERANGE, for underflow conditions

Calling interface:
double erfc(double x);
long double erfcl(long double x);
float erfcf(float x);

GAMMA
Description: The gamma function returns the value of the logarithm of the
absolute value of gamma.

errno: ERANGE, for overflow conditions

Calling interface:
double gamma(double x);
float gammaf(float x);

GAMMA_R
Description: The gamma_r function returns the value of the logarithm of the
absolute value of gamma. The sign of the gamma function is returned in the
integer signgam.

Calling interface:
double gamma_r(double x, int *signgam);
float gammaf_r(float x, int *signgam);

J0
Description: Computes the Bessel function (of the first kind) of x with order 0.

Calling interface:
double j0(double x);
float j0f(float x);

J1
Description: Computes the Bessel function (of the first kind) of x with order 1.

Calling interface:
double j1(double x);
float j1f(float x);

JN
Description: Computes the Bessel function (of the first kind) of x with order n.

Calling interface:
double jn(int n, double x);
float jnf(int n, float x);

Intel® C++ Compiler for Linux* Systems User's Guide

186

LGAMMA
Description: The lgamma function returns the value of the logarithm of the
absolute value of gamma.

errno: ERANGE, for overflow conditions

Calling interface:
double lgamma(double x);
long double lgammal(long double x);
float lgammaf(float x);

LGAMMA_R
Description: The lgamma_r function returns the value of the logarithm of the
absolute value of gamma. The sign of the gamma function is returned in the
integer signgam.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma_r(double x, int *signgam);
long double lgamma_r(double x, int *signgam);
float lgammaf_r(float x, int *signgam);

TGAMMA
Description: The tgamma function computes the gamma function of x.

errno: EDOM, for x=0 or negative integers.

Calling interface:
double tgamma(double x);
long double tgammal(long double x);
float tgammaf(float x);

Y0
Description: Computes the Bessel function (of the second kind) of x with order
0.

errno: EDOM, for x <= 0

Calling interface:
double y0(double x);
float y0f(float x);

Y1
Description: Computes the Bessel function (of the second kind) of x with order
1.

errno: EDOM, for x <= 0

Calling interface:
double y1(double x);
float y1f(float x);

Intel Math Library

187

YN
Description: Computes the Bessel function (of the second kind) of x with order
n.

errno: EDOM, for x <= 0

Calling interface:
double yn(int n, double x);
float ynf(int n, float x);

Nearest Integer Functions
The Intel Math library supports the following nearest integer functions:

CEIL
Description: The ceil function returns the smallest integral value not less than
x as a floating-point number. This function may be inlined with the Itanium®
compiler.

Calling interface:
double ceil(double x);
long double ceill(long double x);
float ceilf(float x);

FLOOR
Description: The floor function returns the largest integral value not greater
than x as a floating-point value. This function may be inlined with the Itanium®
compiler.

Calling interface:
double floor(double x);
long double floorl(long double x);
float floorf(float x);

LLRINT
Description: The llrint function returns the rounded integer value
(according to the current rounding direction) as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llrint(double x);
long long int llrintl(long double x);
long long int llrintf(float x);

LLROUND
Description: The llround function returns the rounded integer value as a
long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llround(double x);
long long int llroundl(long double x);
long long int llroundf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

188

LRINT
Description: The lrint function returns the rounded integer value (according
to the current rounding direction) as a long int.

Calling interface:
long int lrint(double x);
long int lrintl(long double x);
long int lrintf(float x);

LROUND
Description: The lround function returns the rounded integer value as a
long int. Halfway cases are rounded away from zero.

errno: ERANGE, for values too large

Calling interface:
long int lround(double x);
long int lroundl(long double x);
long int lroundf(float x);

MODF
Description: The modf function returns the value of the signed fractional part
of x and stores the integral part in floating-point format in *iptr.

Calling interface:
double modf(double x, double *iptr);
long double modfl(long double x, long double *iptr);
float modff(float x, float *iptr);

NEARBYINT
Description: The nearbyint function returns the rounded integral value as a
floating-point number, using the current rounding direction.

Calling interface:
double nearbyint(double x);
long double nearbyintl(long double x);
float nearbyintf(float x);

RINT
Description: The rint function returns the rounded integral value as a
floating-point number, using the current rounding direction.

Calling interface:
double rint(double x);
long double rintl(long double x);
float rintf(float x);

ROUND
Description: The round function returns the nearest integral value as a
floating-point number. Halfway cases are rounded away from zero.

Calling interface:
double round(double x);
long double roundl(long double x);
float roundf(float x);

Intel Math Library

189

TRUNC
Description: The trunc function returns the truncated integral value as a
floating-point number.

Calling interface:
double trunc(double x);
long double truncl(long double x);
float truncf(float x);

Remainder Functions
The Intel Math library supports the following remainder functions:

FMOD
Description: The fmod function returns the value x-n*y for integer n such
that if y is nonzero, the result has the same sign as x and magnitude less than the
magnitude of y.

errno: EDOM, for x = 0

Calling interface:
double fmod(double x, double y);
long double fmodl(long double x, long double y);
float fmodf(float x, float y);

REMAINDER
Description: The remainder function returns the value of x REM y as
required by the IEEE standard.

Calling interface:
double remainder(double x, double y);
long double remainderl(long double x, long double y);
float remainderf(float x, float y);

REMQUO
Description: The remquo function returns the value of x REM y. In the
object pointed to by quo the function stores a value whose sign is the sign of
x/y and whose magnitude is congruent modulo 224 to the magnitude of the
integral quotient of x/y, where n is an implementation-defined integer greater
than or equal to 3.

Calling interface:
double remquo(double x, double y, int *quo);
long double remquol(long double x, long double y, int
*quo);
float remquof(float x, float y, int *quo);

Intel® C++ Compiler for Linux* Systems User's Guide

190

Miscellaneous Functions
The Intel Math library supports the following miscellaneous functions:

COPYSIGN
Description: The copysign function returns the value with the magnitude of
x and the sign of y.

Calling interface:
double copysign(double x, double y);
long double copysignl(long double x, long double y);
float copysignf(float x, float y);

FABS
Description: The fabs function returns the absolute value of x.

Calling interface:
double fabs(double x);
long double fabsl(long double x);
float fabsf(float x);

FDIM
Description: The fdim function returns the positive difference value, x-y (for
x > y) or +0 (for x ≤ y).

errno: ERANGE, for values too large

Calling interface:
double fdim(double x, double y);
long double fdiml(long double x, long double y);
float fdimf(float x, float y);

FMA
Description: The fma functions return (x*y)+z.

Calling interface:
double fma(double x, double y, long double z);
long double fmal(long double x, long double y, long
double z);
float fmaf(float x, float y, long double z);

FMAX
Description: The fmax function returns the maximum numeric value of its
arguments.

Calling interface:
double fmax(double x, double y);
long double fmaxl(long double x, long double y);
float fmaxf(float x, float y);

Intel Math Library

191

FMIN
Description: The fmin function returns the minimum numeric value of its
arguments.

Calling interface:
double fmin(double x, double y);
long double fminl(long double x, long double y);
float fminf(float x, float y);

FPCLASSIFY
Description: The fpclassify function returns the value of the number
classification macro appropriate to the value of its argument.

Calling interface:
double fpclassify(double x);
long double fpclassifyl(long double x);
float fpclassifyf(float x);

ISFINITE
Description: The isfinite function returns 1 if x is not a NaN or +/- infinity.
Otherwise 0 is returned..

Calling interface:
int isfinite(double x);
int isfinitel(long double x);
int isfinitef(float x);

ISGREATER
Description: The isgreater function returns 1 if x is greater than y. This
function does not raise the invalid floating-point exception.

Calling interface:
int isgreater(double x, double y);
int isgreaterl(long double x, long double y);
int isgreaterf(float x, float y);

ISGREATEREQUAL
Description: The isgreaterequal function returns 1 if x is greater than or
equal to y. This function does not raise the invalid floating-point exception.

Calling interface:
int isgreaterequal(double x, double y);
int isgreaterequall(long double x, long double y);
int isgreaterequalf(float x, float y);

ISINF
Description: The isinf function returns a non-zero value if and only if its
argument has an infinite value.

Calling interface:
int isinf(double x);
int isinfl(long double x);
int isinff(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

192

ISLESS
Description: The isless function returns 1 if x is less than y. This function
does not raise the invalid floating-point exception.

Calling interface:
int isless(double x, double y);
int islessl(long double x, long double y);
int islessf(float x, float y);

ISLESSEQUAL
Description: The islessequal function returns 1 if x is less than or equal to
y. This function does not raise the invalid floating-point exception.

Calling interface:
int islessequal(double x, double y);
int islessequall(long double x, long double y);
int islessequalf(float x, float y);

ISLESSGREATER
Description: The islessgreater function returns 1 if x is less than or
greater than y. This function does not raise the invalid floating-point exception.

Calling interface:
int islessgreater(double x, double y);
int islessgreaterl(long double x, long double y);
int islessgreaterf(float x, float y);

ISNAN
Description: The isnan function returns a non-zero value if and only if x has
a NaN value.

Calling interface:
int isnan(double x);
int isnanl(long double x);
int isnanf(float x);

ISNORMAL
Description: The isnormal function returns a non-zero value if and only if x
is normal.

Calling interface:
int isnormal(double x);
int isnormall(long double x);
int isnormalf(float x);

ISUNORDERED
Description: The isunordered function returns 1 if either x or y is a NaN.
This function does not raise the invalid floating-point exception.

Calling interface:
int isunordered(double x, double y);
int isunorderedl(long double x, long double y);
int isunorderedf(float x, float y);

Intel Math Library

193

NEXTAFTER
Description: The nextafter function returns the next representable value in
the specified format after x in the direction of y.

errno: ERANGE, for values too large

Calling interface:
double nextafter(double x, double y);
long double nextafterl(long double x, long double y);
float nextafterf(float x, float y);

NEXTTOWARD
Description: The nexttoward function returns the next representable value
in the specified format after x in the direction of y. If x equals y, then the
function returns y converted to the type of the function.

errno: ERANGE, for values too large

Calling interface:
double nexttoward(double x, double y);
long double nexttowardl(long double x, long double y);
float nexttowardf(float x, float y);

SIGNBIT
Description: The signbit function returns a non-zero value if and only if the
sign of x is negative.

Calling interface:
int signbit(double x);
int signbitl(long double x);
int signbitf(float x);

SIGNIFICAND
Description: The significand function returns the significand of x in the
interval [1,2). For x equal to zero, NaN, or +/- infinity, the original x is returned.

Calling interface:
double significand(double x);
long double significandl(long double x);
float significandf(float x);

Complex Functions
The Intel Math library supports the following complex functions:

CABS
Description: The cabs function returns the complex absolute value of z.

Calling interface:
double cabs(double _Complex z);
long double cabs(long double _Complex z);
float cabsf(float _Complex z);

Intel® C++ Compiler for Linux* Systems User's Guide

194

CACOS
Description: The cacos function returns the complex inverse cosine of z.

Calling interface:
double _Complex cacos(double _Complex z);
long double _Complex cacosl(long double _Complex z);
float _Complex cacosf(float _Complex z);

CACOSH
Description: The cacosh function returns the complex inverse hyperbolic
cosine of z.

Calling interface:
double _Complex cacosh(double _Complex z);
long double _Complex cacoshl(long double _Complex z);
float _Complex cacoshf(float _Complex z);

CARG
Description: The carg function returns the value of the argument in the
interval [-pi, +pi].

Calling interface:
double carg(double _Complex z);
long double cargl(long double _Complex z);
float cargf(float _Complex z);

CASIN
Description: The casin function returns the complex inverse sine of z.

Calling interface:
double _Complex casin(double _Complex z);
long double _Complex casinl(long double _Complex z);
float _Complex casinf(float _Complex z);

CASINH
Description: The casinh function returns the complex inverse hyperbolic sine
of z.

Calling interface:
double _Complex casinh(double _Complex z);
long double _Complex casinhl(long double _Complex z);
float _Complex casinhf(float _Complex z);

CATAN
Description: The catan function returns the complex inverse tangent of z.

Calling interface:
double _Complex catan(double _Complex z);
long double _Complex catanl(long double _Complex z);
float _Complex catanf(float _Complex z);

Intel Math Library

195

CATANH
Description: The catanh function returns the complex inverse hyperbolic
tangent of z.

Calling interface:
double _Complex catanh(double _Complex z);
long double _Complex catanhl(long double _Complex z);
float _Complex catanhf(float _Complex z);

CCOS
Description: The ccos function returns the complex cosine of z.

Calling interface:
double _Complex ccos(double _Complex z);
long double _Complex ccosl(long double _Complex z);
float _Complex ccosf(float _Complex z);

CCOSH
Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:
double _Complex ccosh(double _Complex z);
long double _Complex ccoshl(long double _Complex z);
float _Complex ccoshf(float _Complex z);

CEXP
Description: The cexp function computes ez.

Calling interface:
double _Complex cexp(double _Complex z);
long double _Complex cexpl(long double _Complex z);
float _Complex cexpf(float _Complex z);

CEXP10
Description: The cexp10 function computes 10z.

Calling interface:
double _Complex cexp10(double _Complex z);
long double _Complex cexp10l(long double _Complex z);
float _Complex cexp10f(float _Complex z);

CIMAG
Description: The cimag function returns the imaginary part value of z.

Calling interface:
double cimag(double _Complex z);
long double cimag(long double _Complex z);
float cimagf(float _Complex z);

Intel® C++ Compiler for Linux* Systems User's Guide

196

CIS
Description: The cis function returns the cosine and sine (as a complex value)
of z measured in radians.

Calling interface:
double _Complex cis(double z);
long double _Complex cis(long double z);
float _Complex cis(float z);

CISD
Description: The cis function returns the cosine and sine (as a complex value)
of z measured in degrees.

Calling interface:
double _Complex cis(double z);
long double _Complex cis(long double z);
float _Complex cis(float z);

CLOG
Description: The clog function returns the complex natural logarithm of z.

Calling interface:
double _Complex clog(double _Complex z);
long double _Complex clogl(long double _Complex z);
float _Complex clogf(float _Complex z);

CLOG2
Description: The clog2 function returns the complex logarithm base 2 of z.

Calling interface:
double _Complex clog2(double _Complex z);
long double _Complex clog2l(long double _Complex z);
float _Complex clog2f(float _Complex z);

CONJ
Description: The conj function returns the complex conjugate of z, by
reversing the sign of its imaginary part.

Calling interface:
double _Complex conj(double _Complex z);
long double _Complex conj(long double _Complex z);
float _Complex conjf(float _Complex z);

CPOW
Description: The cpow function returns the complex power function, xy .

Calling interface:
double _Complex cpow(double _Complex x, double
_Complex y);
long double _Complex cpowl(long double _Complex x,
double _Complex y);
float _Complex cpowf(float _Complex x, float _Complex
y);

Intel Math Library

197

CPROJ
Description: The cproj function returns a projection of z onto the Riemann
sphere.

Calling interface:
double _Complex cproj(double _Complex z);
long double _Complex cproj(long double _Complex z);
float _Complex cprojf(float _Complex z);

CREAL
Description: The creal function returns the real part value of z.

Calling interface:
double creal(double _Complex z);
long double creal(long double _Complex z);
float crealf(float _Complex z);

CSIN
Description: The csin function returns the complex sine of z.

Calling interface:
double _Complex csin(double _Complex z);
long double _Complex csinl(long double _Complex z);
float _Complex csinf(float _Complex z);

CSINH
Description: The csinh function returns the complex hyperbolic sine of z.

Calling interface:
double _Complex csinh(double _Complex z);
long double _Complex csinl(long double _Complex z);
float _Complex csinhf(float _Complex z);

CSQRT
Description: The csqrt function returns the complex square root of z.

Calling interface:
double _Complex csqrt(double _Complex z);
long double _Complex csqrtl(long double _Complex z);
float _Complex csqrtf(float _Complex z);

CTAN
Description: The ctan function returns the complex tangent of z.

Calling interface:
double _Complex ctan(double _Complex z);
long double _Complex ctanl(long double _Complex z);
float _Complex ctanf(float _Complex z);

CTANH
Description: The ctanh function returns the complex hyperbolic tangent of z.

Calling interface:
double _Complex ctanh(double _Complex z);
long double _Complex ctanhl(long double _Complex z);
float _Complex ctanhf(float _Complex z);

Intel® C++ Compiler for Linux* Systems User's Guide

198

C99 Macros
The Intel Math library and mathimf.h header file support the following C99 macros:

int fpclassify(x);
int isfinite(x);
int isgreater(x, y);
int isgreaterequal(x, y);
int isinf(x);
int isless(x, y);
int islessequal(x, y);
int islessgreater(x, y);
int isnan(x);
int isnormal(x);
int isunordered(x, y);
int signbit(x);

See also, Miscellaneous Functions.

199

Intel® C++ Intrinsics Reference
Introduction

The Intel® Pentium® 4 processor and other Intel processors have instructions to enable
development of optimized multimedia applications. The instructions are implemented through
extensions to previously implemented instructions. This technology uses the single instruction,
multiple data (SIMD) technique. By processing data elements in parallel, applications with media-
rich bit streams are able to significantly improve performance using SIMD instructions. The
Intel® Itanium® processor also supports these instructions.

The most direct way to use these instructions is to inline the assembly language instructions into
your source code. However, this can be time-consuming and tedious, and assembly language
inline programming is not supported on all compilers. Instead, Intel provides easy implementation
through the use of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C
variables instead of hardware registers. Using these intrinsics frees programmers from having to
program in assembly language and manage registers. In addition, the compiler optimizes the
instruction scheduling so that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium
instructions that cannot be generated using the standard constructs of the C and C++ languages.
The Intel® C++ Compiler also supports general purpose intrinsics that work across all IA-32 and
Itanium-based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual,
Intel Corporation, doc. number 243191

Intel® C++ Compiler for Linux* Systems User's Guide

200

Intrinsics Availability on Intel Processors

Processors: MMX™
Technology
Intrinsics

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium
Processor
Instructions

Itanium
Processor

X X N/A X

Pentium 4
Processor

X X X N/A

Pentium III
Processor

X X N/A N/A

Pentium II
Processor

X N/A N/A N/A

Pentium with
MMX
Technology

X N/A N/A N/A

Pentium Pro
Processor

N/A N/A N/A N/A

Pentium
Processor

N/A N/A N/A N/A

Benefits of Using Intrinsics
The major benefit of using intrinsics is that you now have access to key features that are not
available using conventional coding practices. Intrinsics enable you to code with the syntax of C
function calls and variables instead of assembly language. Most MMX� technology, Streaming
SIMD Extensions, and Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic
that implements that instruction directly. This frees you from managing registers and enables the
compiler to optimize the instruction scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new
features:

• new Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing

• new Data Types--Enable packing of up to 16 elements of data in one register

The Streaming SIMD Extensions 2 intrinsics are defined only for IA-32, not for Itanium®-based
systems. Streaming SIMD Extensions 2 operate on 128 bit quantities - 2 64-bit double precision
floating point values. The Itanium architecture does not support parallel double precision
computation, so Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Intel® C++ Intrinsics Reference

201

New Registers
A key feature provided by the architecture of the processors are new register sets. The MMX
instructions use eight 64-bit registers (mm0 to mm7) which are aliased on the floating-point stack
registers.

MMX™ Technology Registers

Streaming SIMD Extensions Registers

The Streaming SIMD Extensions use eight 128-bit registers (xmm0 to xmm7).

These new data registers enable the processing of data elements in parallel. Because each register
can hold more than one data element, the processor can process more than one data element
simultaneously. This processing capability is also known as single-instruction multiple data
processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing
registers and assembly programming. Further, the compiler optimizes the instruction scheduling so
that your executable runs faster.

 Note

The MM and XMM registers are the SIMD registers used by the IA-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the
Itanium-based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit
general registers and the 64-bit significand of the 80-bit floating-point register.

Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are
used as the operands to these intrinsic functions. The table below shows the new data type
availability marked with "X".

Intel® C++ Compiler for Linux* Systems User's Guide

202

Data Types Available

New Data
Type

MMX™
Technology

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Itanium®
Processor

__m64 X X X X

__m128 N/A X X X

__m128d N/A N/A X X

__m128i N/A N/A X X

__m64 Data Type

The __m64 data type is used to represent the contents of an MMX register, which is the register
that is used by the MMX technology intrinsics. The __m64 data type can hold eight 8-bit values,
four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __m128 data type is used to represent the contents of a Streaming SIMD Extension register
used by the Streaming SIMD Extension intrinsics. The __m128 data type can hold four 32-bit
floating values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer
values.

The compiler aligns __m128 local and global data to 16-byte boundaries on the stack. To align
integer, float, or double arrays, you can use the declspec statement.

Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

• Use new data types only on either side of an assignment, as a return value, or as a parameter.
You cannot use it with other arithmetic expressions (+, -, etc).

• Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

• Use new data types only with the respective intrinsics described in this documentation. The
new data types are supported on both sides of an assignment statement: as parameters to a
function call, and as a return value from a function call.

Intel® C++ Intrinsics Reference

203

Naming and Usage Syntax
Most of the intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and
sub for subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two
letters of each suffix denotes whether the data is packed (p), extended
packed (ep), or scalar (s). The remaining letters denote the type:

• s single-precision floating point

• d double-precision floating point

• i128 signed 128-bit integer

• i64 signed 64-bit integer

• u64 unsigned 64-bit integer

• i32 signed 32-bit integer

• u32 unsigned 32-bit integer

• i16 signed 16-bit integer

• u16 unsigned 16-bit integer

• i8 signed 8-bit integer

• u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0
is the lowest word of r. Some intrinsics are "composites" because they require more than one
instruction to implement them.

The packed values are represented in right-to-left order, with the lowest value being used for
scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their
arguments to be immediates (constant integer literals).

Intel® C++ Compiler for Linux* Systems User's Guide

204

Intrinsic Syntax
To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where,

data_type Is the return data type, which can be either void, int, __m64,
__m128, __m128d, __m128i, __int64. Intrinsics that can be
implemented across all IA may return other data types as well, as
indicated in the intrinsic syntax definitions.

intrinsic_name Is the name of the intrinsic, which behaves like a function that you can
use in your C++ code instead of inlining the actual instruction.

parameters Represents the parameters required by each intrinsic.

Intrinsics Implementation Across All IA
The intrinsics in this section function across all IA-32 and Itanium®-based platforms. They are
offered as a convenience to the programmer. They are grouped as follows:

• Integer Arithmetic Related

• Floating-Point Related

• String and Block Copy Related

• Miscellaneous

Integer Arithmetic Related
Intrinsic Description

int abs(int) Returns the absolute value of an
integer.

long labs(long) Returns the absolute value of a
long integer.

unsigned long _lrotl(unsigned long
value, int shift)

Rotates bits left for an unsigned
long integer.

unsigned long _lrotr(unsigned long
value, int shift)

Rotates bits right for an unsigned
long integer.

unsigned int __rotl(unsigned int
value, int shift)

Rotates bits left for an unsigned
integer.

unsigned int __rotr(unsigned int
value, int shift)

Rotates bits right for an unsigned
integer.

Intel® C++ Intrinsics Reference

205

 Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Floating-point Related
Intrinsic Description

double fabs(double) Returns the absolute value of a floating-point value.

double log(double) Returns the natural logarithm ln(x), x>0, with
double precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with single
precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0, with
double precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0, with
single precision.

double exp(double) Returns the exponential function with double
precision.

float expf(float) Returns the exponential function with single
precision.

double pow(double, double) Returns the value of x to the power y with double
precision.

float powf(float, float) Returns the value of x to the power y with single
precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the arccosine of x with double precision

float acosf(float) Returns the arccosine of x with single precision

Intel® C++ Compiler for Linux* Systems User's Guide

206

Intrinsic Description

double acosh(double) Compute the inverse hyperbolic cosine of the
argument with double precision.

float acoshf(float) Compute the inverse hyperbolic cosine of the
argument with single precision.

double asin(double) Compute arc sine of the argument with double
precision.

float asinf(float) Compute arc sine of the argument with single
precision.

double asinh(double) Compute inverse hyperbolic sine of the argument
with double precision.

float asinhf(float) Compute inverse hyperbolic sine of the argument
with single precision.

double atan(double) Compute arc tangent of the argument with double
precision.

float atanf(float) Compute arc tangent of the argument with single
precision.

double atanh(double) Compute inverse hyperbolic tangent of the argument
with double precision.

float atanhf(float) Compute inverse hyperbolic tangent of the argument
with single precision.

float cabs(double)** Computes absolute value of complex number.

double ceil(double) Computes smallest integral value of double
precision argument not less than the argument.

float ceilf(float) Computes smallest integral value of single precision
argument not less than the argument.

double cosh(double) Computes the hyperbolic cosine of double precison
argument.

float coshf(float) Computes the hyperbolic cosine of single precison
argument.

float fabsf(float) Computes absolute value of single precision
argument.

Intel® C++ Intrinsics Reference

207

Intrinsic Description

double floor(double) Computes the largest integral value of the double
precision argument not greater than the argument.

float floorf(float) Computes the largest integral value of the single
precision argument not greater than the argument.

double fmod(double) Computes the floating-point remainder of the
division of the first argument by the second
argument with double precison.

float fmodf(float) Computes the floating-point remainder of the
division of the first argument by the second
argument with single precison.

double hypot(double,
double)

Computes the length of the hypotenuse of a right
angled triangle with double precision.

float hypotf(float) Computes the length of the hypotenuse of a right
angled triangle with single precision.

double rint(double) Computes the integral value represented as double
using the IEEE rounding mode.

float rintf(float) Computes the integral value represented with single
precision using the IEEE rounding mode.

double sinh(double) Computes the hyperbolic sine of the double
precision argument.

float sinhf(float) Computes the hyperbolic sine of the single precision
argument.

float sqrtf(float) Computes the square root of the single precision
argument.

double tanh(double) Computes the hyperbolic tangent of the double
precision argument.

float tanhf(float) Computes the hyperbolic tangent of the single
precision argument.

* Not implemented on Itanium®-based systems.

** double in this case is a complex number made up of two single precision (32-bit floating
point) elements (real and imaginary parts).

Intel® C++ Compiler for Linux* Systems User's Guide

208

String and Block Copy Related
The following are not implemented as intrinsics on Itanium®-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in a string to a
fixed value.

void *memcmp(const void *cs, const void
*ct, size_t n)

Compares two regions of memory.
Return <0 if cs<ct, 0 if cs=ct,
or >0 if cs>ct.

void *memcpy(void *s, const void *ct,
size_t n)

Copies from memory. Returns s.

void *memset(void * s, int c, size_t n) Sets memory to a fixed value.
Returns s.

char *strcat(char * s, const char * ct) Appends to a string. Returns s.

int *strcmp(const char *, const char *) Compares two strings. Return <0
if cs<ct, 0 if cs=ct, or >0 if
cs>ct.

char *strcpy(char * s, const char * ct) Copies a string. Returns s.

size_t strlen(const char * cs) Returns the length of string cs.

int strncmp(char *, char *, int) Compare two strings, but only
specified number of characters.

int strncpy(char *, char *, int) Copies a string, but only specified
number of characters.

Intrinsic Functions
The intrinsic functions listed below are common to IA-32 and the Itanium® architecture.

Intrinsic Description

void *_alloca(int) Allocates the buffers.

int _setjmp(jmp_buf)* A fast version of setjmp(), which bypasses the
termination handling. Saves the callee-save
registers, stack pointer and return address.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

Intel® C++ Intrinsics Reference

209

Intrinsic Description

_abnormal_termination(void) Can be invoked only by termination handlers.
Returns TRUE if the termination handler is invoked
as a result of a premature exit of the corresponding
try-finally region.

void _enable() Enables the interrupt.

void _disable() Disables the interrupt.

int _bswap(int) Intrinsic that maps to the IA-32 instruction BSWAP
(swap bytes). Convert little/big endian 32-bit
argument to big/little endian form

int _in_byte(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer data byte from port specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer double word from port specified by
argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer word from port specified by argument.

int _inp(int) Same as _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer data byte in second argument to port
specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer double word in second argument to port
specified by first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer word in second argument to port specified
by first argument.

int _outp(int, int) Same as _out_byte

int _outpd(int, int) Same as _out_dword

int _outpw(int, int) Same as _out_word

Intel® C++ Compiler for Linux* Systems User's Guide

210

MMX™ Technology Intrinsics
Support for MMX™ Technology

MMX� technology is an extension to the Intel architecture (IA) instruction set. The MMX
instruction set adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each
of the eight registers can be directly addressed using the register names mm0 to mm7.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

The EMMS Instruction: Why You Need It
Using EMMS is like emptying a container to accommodate new content. For instance, MMX�
instructions automatically enable an FP tag word in the register to enable use of the __m64 data
type. This resets the FP register set to alias it as the MMX register set. To enable the FP register
set again, reset the register state with the EMMS instruction or via the _mm_empty() intrinsic.

Why You Need EMMS to Reset After an MMX™ Instruction

Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-
point instruction can result in unexpected execution or poor performance.

EMMS Usage Guidelines
The guidelines when to use EMMS are:

• Do not use on Itanium®-based systems. There are no special registers (or overlay) for the
MMX� instructions or Streaming SIMD Extensions on Itanium-based systems even though
the intrinsics are supported.

• Use _mm_empty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction -- for example, before calculations on float, double or long double. You
must be aware of all situations when your code generates an MMX instruction with the
Intel® C++ Compiler, i.e.:

Intel® C++ Intrinsics Reference

211

• when using an MMX technology intrinsic

• when using Streaming SIMD Extension integer intrinsics that use the __m64
data type

• when referencing an __m64 data type variable

• when using an MMX instruction through inline assembly

• Do not use _mm_empty() before an MMX instruction, since using _mm_empty() before
an MMX instruction incurs an operation with no benefit (no-op).

• Use different functions for operations that use FP instructions and those that use MMX
instructions. This eliminates the need to empty the multimedia state within the body of a
critical loop.

• Use _mm_empty() during runtime initialization of __m64 and FP data types. This ensures
resetting the register between data type transitions.

• See the "Correct Usage" coding example below.

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z);
float f = init();

__m64 x = _m_paddd(y, z);
float f = (_mm_empty(), init());

For more documentation on EMMS, visit the http://developer.intel.com Web site.

MMX™ Technology General Support Intrinsics
The prototypes for MMX� technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Corresponding
Instruction

Operation Signed Saturation

_m_empty _mm_empty EMMS Empty MM
state

-- --

_m_from_int _mm_cvtsi32_si64 MOVD Convert
from int

-- --

_m_to_int _mm_cvtsi64_si32 MOVD Convert
from int

-- --

_m_packsswb _mm_packs_pi16 PACKSSWB Pack Yes Yes

_m_packssdw _mm_packs_pi32 PACKSSDW Pack Yes Yes

_m_packuswb _mm_packs_pu16 PACKUSWB Pack No Yes

_m_punpckhbw _mm_unpackhi_pi8 PUNPCKHBW Interleave -- --

_m_punpckhwd _mm_unpackhi_pi16 PUNPCKHWD Interleave -- --

_m_punpckhdq _mm_unpackhi_pi32 PUNPCKHDQ Interleave -- --

Intel® C++ Compiler for Linux* Systems User's Guide

212

Intrinsic
Name

Alternate
Name

Corresponding
Instruction

Operation Signed Saturation

_m_punpcklbw _mm_unpacklo_pi8 PUNPCKLBW Interleave -- --

_m_punpcklwd _mm_unpacklo_pi16 PUNPCKLWD Interleave -- --

_m_punpckldq _mm_unpacklo_pi32 PUNPCKLDQ Interleave -- --

void _m_empty(void)

Empty the multimedia state.

__m64 _m_from_int(int i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero-
extended to 64 bits.

int _m_to_int(__m64 m)

Convert the lower 32 bits of the __m64 object m to an integer.

__m64 _m_packsswb(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result
with signed saturation, and pack the four 16-bit values from m2 into the upper
four 8-bit values of the result with signed saturation.

__m64 _m_packssdw(__m64 m1, __m64 m2)

Pack the two 32-bit values from m1 into the lower two 16-bit values of the result
with signed saturation, and pack the two 32-bit values from m2 into the upper
two 16-bit values of the result with signed saturation.

__m64 _m_packuswb(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result
with unsigned saturation, and pack the four 16-bit values from m2 into the upper
four 8-bit values of the result with unsigned saturation.

__m64 _m_punpckhbw(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the high half of m1 with the four values
from the high half of m2. The interleaving begins with the data from m1.

__m64 _m_punpckhwd(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the high half of m1 with the two values
from the high half of m2. The interleaving begins with the data from m1.

__m64 _m_punpckhdq(__m64 m1, __m64 m2)

Interleave the 32-bit value from the high half of m1 with the 32-bit value from
the high half of m2. The interleaving begins with the data from m1.

__m64 _m_punpcklbw(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the low half of m1 with the four values
from the low half of m2. The interleaving begins with the data from m1.

__m64 _m_punpcklwd(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the low half of m1 with the two values
from the low half of m2. The interleaving begins with the data from m1.

Intel® C++ Intrinsics Reference

213

__m64 _m_punpckldq(__m64 m1, __m64 m2)

Interleave the 32-bit value from the low half of m1 with the 32-bit value from
the low half of m2. The interleaving begins with the data from m1.

MMX™ Technology Packed Arithmetic Intrinsics
The prototypes for MMX� technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate Name Corresponding
Instruction

Operation Signed Argument
Values/Bits

Result
Values/Bits

_m_paddb _mm_add_pi8 PADDB Addition -- 8/8 8/8

_m_paddw _mm_add_pi16 PADDW Addition -- 4/16 4/16

_m_paddd _mm_add_pi32 PADDD Addition -- 2/32 2/32

_m_paddsb _mm_adds_pi8 PADDSB Addition Yes 8/8 8/8

_m_paddsw _mm_adds_pi16 PADDSW Addition Yes 4/16 4/16

_m_paddusb _mm_adds_pu8 PADDUSB Addition No 8/8 8/8

_m_paddusw _mm_adds_pu16 PADDUSW Addition No 4/16 4/16

_m_psubb _mm_sub_pi8 PSUBB Subtraction -- 8/8 8/8

_m_psubw _mm_sub_pi16 PSUBW Subtraction -- 4/16 4/16

_m_psubd _mm_sub_pi32 PSUBD Subtraction -- 2/32 2/32

_m_psubsb _mm_subs_pi8 PSUBSB Subtraction Yes 8/8 8/8

_m_psubsw _mm_subs_pi16 PSUBSW Subtraction Yes 4/16 4/16

_m_psubusb _mm_subs_pu8 PSUBUSB Subtraction No 8/8 8/8

_m_psubusw _mm_subs_pu16 PSUBUSW Subtraction No 4/16 4/16

_m_pmaddwd _mm_madd_pi16 PMADDWD Multiplication -- 4/16 2/32

_m_pmulhw _mm_mulhi_pi16 PMULHW Multiplication Yes 4/16 4/16 (high)

_m_pmullw _mm_mullo_pi16 PMULLW Multiplication -- 4/16 4/16 (low)

__m64 _m_paddb(__m64 m1, __m64 m2)

Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

__m64 _m_paddw(__m64 m1, __m64 m2)

Add the four 16-bit values in m1 to the four 16-bit values in m2.

Intel® C++ Compiler for Linux* Systems User's Guide

214

__m64 _m_paddd(__m64 m1, __m64 m2)

Add the two 32-bit values in m1 to the two 32-bit values in m2.

__m64 _m_paddsb(__m64 m1, __m64 m2)

Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2
using saturating arithmetic.

__m64 _m_paddsw(__m64 m1, __m64 m2)

Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2
using saturating arithmetic.

__m64 _m_paddusb(__m64 m1, __m64 m2)

Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in
m2 and using saturating arithmetic.

__m64 _m_paddusw(__m64 m1, __m64 m2)

Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in
m2 using saturating arithmetic.

__m64 _m_psubb(__m64 m1, __m64 m2)

Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

__m64 _m_psubw(__m64 m1, __m64 m2)

Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

__m64 _m_psubd(__m64 m1, __m64 m2)

Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

__m64 _m_psubsb(__m64 m1, __m64 m2)

Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in
m1 using saturating arithmetic.

__m64 _m_psubsw(__m64 m1, __m64 m2)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values
in m1 using saturating arithmetic.

__m64 _m_psubusb(__m64 m1, __m64 m2)

Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit
values in m1 using saturating arithmetic.

__m64 _m_psubusw(__m64 m1, __m64 m2)

Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit
values in m1 using saturating arithmetic.

__m64 _m_pmaddwd(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-
bit intermediate results, which are then summed by pairs to produce two 32-bit
results.

__m64 _m_pmulhw(__m64 m1, __m64 m2)

Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and
produce the high 16 bits of the four results.

__m64 _m_pmullw(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the
low 16 bits of the four results.

Intel® C++ Intrinsics Reference

215

MMX™ Technology Shift Intrinsics
The prototypes for MMX� technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Shift
Direction

Shift
Type

Corresponding
Instruction

_m_psllw _mm_sll_pi16 left Logical PSLLW

_m_psllwi _mm_slli_pi16 left Logical PSLLWI

_m_pslld _mm_sll_pi32 left Logical PSLLD

_m_pslldi _mm_slli_pi32 left Logical PSLLDI

_m_psllq _mm_sll_si64 left Logical PSLLQ

_m_psllqi _mm_slli_si64 left Logical PSLLQI

_m_psraw _mm_sra_pi16 right Arithmetic PSRAW

_m_psrawi _mm_srai_pi16 right Arithmetic PSRAWI

_m_psrad _mm_sra_pi32 right Arithmetic PSRAD

_m_psradi _mm_srai_pi32 right Arithmetic PSRADI

_m_psrlw _mm_srl_pi16 right Logical PSRLW

_m_psrlwi _mm_srli_pi16 right Logical PSRLWI

_m_psrld _mm_srl_pi32 right Logical PSRLD

_m_psrldi _mm_srli_pi32 right Logical PSRLDI

_m_psrlq _mm_srl_si64 right Logical PSRLQ

_m_psrlqi _mm_srli_si64 right Logical PSRLQI

__m64 _m_psllw(__m64 m, __m64 count)

Shift four 16-bit values in m left the amount specified by count while shifting
in zeros.

__m64 _m_psllwi(__m64 m, int count)

Shift four 16-bit values in m left the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

__m64 _m_pslld(__m64 m, __m64 count)

Shift two 32-bit values in m left the amount specified by count while shifting
in zeros.

Intel® C++ Compiler for Linux* Systems User's Guide

216

__m64 _m_pslldi(__m64 m, int count)

Shift two 32-bit values in m left the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

__m64 _m_psllq(__m64 m, __m64 count)

Shift the 64-bit value in m left the amount specified by count while shifting in
zeros.

__m64 _m_psllqi(__m64 m, int count)

Shift the 64-bit value in m left the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

__m64 _m_psraw(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting
in the sign bit.

__m64 _m_psrawi(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting
in the sign bit. For the best performance, count should be a constant.

__m64 _m_psrad(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting
in the sign bit.

__m64 _m_psradi(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting
in the sign bit. For the best performance, count should be a constant.

__m64 _m_psrlw(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting
in zeros.

__m64 _m_psrlwi(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

__m64 _m_psrld(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting
in zeros.

__m64 _m_psrldi(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting
in zeros. For the best performance, count should be a constant.

__m64 _m_psrlq(__m64 m, __m64 count)

Shift the 64-bit value in m right the amount specified by count while shifting in
zeros.

__m64 _m_psrlqi(__m64 m, int count)

Shift the 64-bit value in m right the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

Intel® C++ Intrinsics Reference

217

MMX™ Technology Logical Intrinsics
The prototypes for MMX� technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_m_pand _mm_and_si64 Bitwise AND PAND

_m_pandn _mm_andnot_si64 Logical NOT PANDN

_m_por _mm_or_si64 Bitwise OR POR

_m_pxor _mm_xor_si64 Bitwise Exclusive OR PXOR

__m64 _m_pand(__m64 m1, __m64 m2)

Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _m_pandn(__m64 m1, __m64 m2)

Perform a logical NOT on the 64-bit value in m1 and use the result in a bitwise
AND with the 64-bit value in m2.

__m64 _m_por(__m64 m1, __m64 m2)

Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _m_pxor(__m64 m1, __m64 m2)

Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

MMX™ Technology Compare Intrinsics
The prototypes for MMX� technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Comparison Number
of
Elements

Element
Bit Size

Corresponding
Instruction

_m_pcmpeqb _mm_cmpeq_pi8 Equal 8 8 PCMPEQB

_m_pcmpeqw _mm_cmpeq_pi16 Equal 4 16 PCMPEQW

_m_pcmpeqd _mm_cmpeq_pi32 Equal 2 32 PCMPEQD

_m_pcmpgtb _mm_cmpgt_pi8 Greater Than 8 8 PCMPGTB

_m_pcmpgtw _mm_cmpgt_pi16 Greater Than 4 16 PCMPGTW

_m_pcmpgtd _mm_cmpgt_pi32 Greater Than 2 32 PCMPGTD

Intel® C++ Compiler for Linux* Systems User's Guide

218

__m64 _m_pcmpeqb(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are equal to the respective 8-bit values in m2
set the respective 8-bit resulting values to all ones, otherwise set them to all
zeros.

__m64 _m_pcmpeqw(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are equal to the respective 16-bit values in
m2 set the respective 16-bit resulting values to all ones, otherwise set them to all
zeros.

__m64 _m_pcmpeqd(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are equal to the respective 32-bit values in
m2 set the respective 32-bit resulting values to all ones, otherwise set them to all
zeros.

__m64 _m_pcmpgtb(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are greater than the respective 8-bit values in
m2 set the respective 8-bit resulting values to all ones, otherwise set them to all
zeros.

__m64 _m_pcmpgtw(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are greater than the respective 16-bit values
in m2 set the respective 16-bit resulting values to all ones, otherwise set them to
all zeros.

__m64 _m_pcmpgtd(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are greater than the respective 32-bit values
in m2 set the respective 32-bit resulting values to all ones, otherwise set them all
to zeros.

MMX™ Technology Set Intrinsics
The prototypes for MMX� technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Operation Number of
Elements

Element
Bit Size

Signed Reverse
Order

_mm_setzero_si64 set to zero 1 64 No No

_mm_set_pi32 set integer values 2 32 No No

_mm_set_pi16 set integer values 4 16 No No

_mm_set_pi8 set integer values 8 8 No No

_mm_set1_pi32 set integer values 2 32 Yes No

_mm_set1_pi16 set integer values 4 16 Yes No

_mm_set1_pi8 set integer values 8 8 Yes No

_mm_setr_pi32 set integer values 2 32 No Yes

Intel® C++ Intrinsics Reference

219

Intrinsic
Name

Operation Number of
Elements

Element
Bit Size

Signed Reverse
Order

_mm_setr_pi16 set integer values 4 16 No Yes

_mm_setr_pi8 set integer values 8 8 No Yes

 Note

In the following descriptions regarding the bits of the MMX register, bit 0 is the least
significant and bit 63 is the most significant.

__m64 _mm_setzero_si64()
PXOR
Sets the 64-bit value to zero.
r := 0x0

__m64 _mm_set_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values.
r0 := i0
r1 := i1

__m64 _mm_set_pi16(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values.
r0 := w0
r1 := w1
r2 := w2
r3 := w3

__m64 _mm_set_pi8(char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

(composite) Sets the 8 signed 8-bit integer values.
r0 := b0
r1 := b1
...
r7 := b7

__m64 _mm_set1_pi32(int i)

Sets the 2 signed 32-bit integer values to i.
r0 := i
r1 := i

__m64 _mm_set1_pi16(short s)

(composite) Sets the 4 signed 16-bit integer values to w.
r0 := w
r1 := w
r2 := w
r3 := w

__m64 _mm_set1_pi8(char b)

(composite) Sets the 8 signed 8-bit integer values to b
r0 := b
r1 := b
...
r7 := b

Intel® C++ Compiler for Linux* Systems User's Guide

220

__m64 _mm_setr_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values in reverse order.
r0 := i0
r1 := i1

__m64 _mm_setr_pi16(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values in reverse order.
r0 := w0
r1 := w1
r2 := w2
r3 := w3

__m64 _mm_setr_pi8(char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.
r0 := b0
r1 := b1
...
r7 := b7

MMX™ Technology Intrinsics on Itanium® Architecture
MMX� technology intrinsics provide access to the MMX technology instruction set on
Itanium®-based systems. To provide source compatibility with the IA-32 architecture, these
intrinsics are equivalent both in name and functionality to the set of IA-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names
generate the same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Data Types
The C data type __m64 is used when using MMX technology intrinsics. It can hold eight 8-bit
values, four 16-bit values, two 32-bit values, or one 64-bit value.

The __m64 data type is not a basic ANSI C data type. Therefore, observe the following usage
restrictions:

• Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" + ", " - ", and so on).

• Use the new data type as objects in aggregates, such as unions, to access the byte elements
and structures; the address of an __m64 object may be taken.

• Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel® Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel® Architecture
Software Developer's Manual, Volume 2.

Intel® C++ Intrinsics Reference

221

Streaming SIMD Extensions
This section describes the C++ language-level features supporting the Streaming SIMD
Extensions in the Intel® C++ Compiler. These topics explain the following features of the
intrinsics:

• Floating Point Intrinsics

• Arithmetic Operation Intrinsics

• Logical Operation Intrinsics

• Comparison Intrinsics

• Conversion Intrinsics

• Load Operations

• Set Operations

• Store Operations

• Cacheability Support

• Integer Intrinsics

• Memory and Initialization Intrinsics

• Miscellaneous Intrinsics

• Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Floating-point Intrinsics for Streaming SIMD Extensions
You should be familiar with the hardware features provided by the Streaming SIMD Extensions
when writing programs with the intrinsics. The following are four important issues to keep in
mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient programming aids, be
mindful that they may consist of more than one machine-language instruction.

• Floating-point data loaded or stored as __m128 objects must be generally 16-byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number) arguments is
undefined. Therefore, FP operations using NaN arguments will not match the expected
behavior of the corresponding assembly instructions.

Intel® C++ Compiler for Linux* Systems User's Guide

222

Arithmetic Operations for Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic Instruction Operation R0 R1 R2 R3

_mm_add_ss ADDSS Addition a0 [op]
b0

a1 a2 a3

_mm_add_ps ADDPS Addition a0 [op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_sub_ss SUBSS Subtraction a0 [op]
b0

a1 a2 a3

_mm_sub_ps SUBPS Subtraction a0 [op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_mul_ss MULSS Multiplication a0 [op]
b0

a1 a2 a3

_mm_mul_ps MULPS Multiplication a0 [op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_div_ss DIVSS Division a0 [op]
b0

a1 a2 a3

_mm_div_ps DIVPS Division a0 [op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_sqrt_ss SQRTSS Squared Root [op] a0 a1 a2 a3

_mm_sqrt_ps SQRTPS Squared Root [op] a0 [op]
b1

[op]
b2

[op]
b3

_mm_rcp_ss RCPSS Reciprocal [op] a0 a1 a2 a3

_mm_rcp_ps RCPPS Reciprocal [op] a0 [op]
b1

[op]
b2

[op]
b3

_mm_rsqrt_ss RSQRTSS Reciprocal
Square Root

[op] a0 a1 a2 a3

_mm_rsqrt_ps RSQRTPS Reciprocal
Squared Root

[op] a0 [op]
b1

[op]
b2

[op]
b3

_mm_min_ss MINSS Computes
Minimum

[op](
a0,b0)

a1 a2 a3

Intel® C++ Intrinsics Reference

223

Intrinsic Instruction Operation R0 R1 R2 R3

_mm_min_ps MINPS Computes
Minimum

[op](
a0,b0)

[op]
(a1,
b1)

[op]
(a2,
b2)

[op]
(a3,
b3)

_mm_max_ss MAXSS Computes
Maximum

[op](
a0,b0)

a1 a2 a3

_mm_max_ps MAXPS Computes
Maximum

[op](
a0,b0)

[op]
(a1,
b1)

[op]
(a2,
b2)

[op]
(a3,
b3)

__m128 _mm_add_ss(__m128 a, __m128 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b; the
upper 3 SP FP values are passed through from a.
r0 := a0 + b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_add_ps(__m128 a, __m128 b)

Adds the four SP FP values of a and b.
r0 := a0 + b0
r1 := a1 + b1
r2 := a2 + b2
r3 := a3 + b3

__m128 _mm_sub_ss(__m128 a, __m128 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are
passed through from a.
r0 := a0 - b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sub_ps(__m128 a, __m128 b)

Subtracts the four SP FP values of a and b.
r0 := a0 - b0
r1 := a1 - b1
r2 := a2 - b2
r3 := a3 - b3

__m128 _mm_mul_ss(__m128 a, __m128 b)

Multiplies the lower SP FP values of a and b; the upper 3 SP FP values are
passed through from a.
r0 := a0 * b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_mul_ps(__m128 a, __m128 b)

Multiplies the four SP FP values of a and b.
r0 := a0 * b0
r1 := a1 * b1
r2 := a2 * b2
r3 := a3 * b3

__m128 _mm_div_ss(__m128 a, __m128 b)

Divides the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.
r0 := a0 / b0
r1 := a1 ; r2 := a2 ; r3 := a3

Intel® C++ Compiler for Linux* Systems User's Guide

224

__m128 _mm_div_ps(__m128 a, __m128 b)

Divides the four SP FP values of a and b.
r0 := a0 / b0
r1 := a1 / b1
r2 := a2 / b2
r3 := a3 / b3

__m128 _mm_sqrt_ss(__m128 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP
values are passed through.
r0 := sqrt(a0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sqrt_ps(__m128 a)

Computes the square roots of the four SP FP values of a.
r0 := sqrt(a0)
r1 := sqrt(a1)
r2 := sqrt(a2)
r3 := sqrt(a3)

__m128 _mm_rcp_ss(__m128 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the
upper 3 SP FP values are passed through.
r0 := recip(a0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_rcp_ps(__m128 a)

Computes the approximations of reciprocals of the four SP FP values of a.
r0 := recip(a0)
r1 := recip(a1)
r2 := recip(a2)
r3 := recip(a3)

__m128 _mm_rsqrt_ss(__m128 a)

Computes the approximation of the reciprocal of the square root of the lower SP
FP value of a; the upper 3 SP FP values are passed through.
r0 := recip(sqrt(a0))
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_rsqrt_ps(__m128 a)

Computes the approximations of the reciprocals of the square roots of the four
SP FP values of a.
r0 := recip(sqrt(a0))
r1 := recip(sqrt(a1))
r2 := recip(sqrt(a2))
r3 := recip(sqrt(a3))

__m128 _mm_min_ss(__m128 a, __m128 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP
FP values are passed through from a.
r0 := min(a0, b0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_min_ps(__m128 a, __m128 b)

Computes the minimum of the four SP FP values of a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

Intel® C++ Intrinsics Reference

225

__m128 _mm_max_ss(__m128 a, __m128 b)

Computes the maximum of the lower SP FP values of a and b; the upper 3 SP
FP values are passed through from a.
r0 := max(a0, b0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_max_ps(__m128 a, __m128 b)

Computes the maximum of the four SP FP values of a and b.
r0 := max(a0, b0)
r1 := max(a1, b1)
r2 := max(a2, b2)
r3 := max(a3, b3)

Logical Operations for Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
Instruction

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Logical NOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive OR XORPS

__m128 _mm_and_ps(__m128 a, __m128 b)

Computes the bitwise And of the four SP FP values of a and b.
r0 := a0 & b0
r1 := a1 & b1
r2 := a2 & b2
r3 := a3 & b3

__m128 _mm_andnot_ps(__m128 a, __m128 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.
r0 := ~a0 & b0
r1 := ~a1 & b1
r2 := ~a2 & b2
r3 := ~a3 & b3

__m128 _mm_or_ps(__m128 a, __m128 b)

Computes the bitwise OR of the four SP FP values of a and b.
r0 := a0 | b0
r1 := a1 | b1
r2 := a2 | b2
r3 := a3 | b3

__m128 _mm_xor_ps(__m128 a, __m128 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.
r0 := a0 ^ b0
r1 := a1 ^ b1
r2 := a2 ^ b2
r3 := a3 ^ b3

Intel® C++ Compiler for Linux* Systems User's Guide

226

Comparisons for Streaming SIMD Extensions
Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP
values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP
FP values of a and b are compared, and a 32-bit mask is returned; the upper three SP FP values
are passed through from a. The mask is set to 0xffffffff for each element where the
comparison is true and 0x0 where the comparison is false.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic Name Comparison Corresponding Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

_mm_cmple_ps Less Than or Equal CMPLEPS

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmpnle_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

Intel® C++ Intrinsics Reference

227

Intrinsic Name Comparison Corresponding Instruction

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ps Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

_mm_ucomieq_ss Equal UCOMISS

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

__m128 _mm_cmpeq_ss(__m128 a, __m128 b)

Compare for equality.
r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpeq_ps(__m128 a, __m128 b)

Compare for equality.
r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffff : 0x0
r2 := (a2 == b2) ? 0xffffffff : 0x0
r3 := (a3 == b3) ? 0xffffffff : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

228

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

Compare for less-than.
r0 := (a0 < b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

Compare for less-than.
r0 := (a0 < b0) ? 0xffffffff : 0x0
r1 := (a1 < b1) ? 0xffffffff : 0x0
r2 := (a2 < b2) ? 0xffffffff : 0x0
r3 := (a3 < b3) ? 0xffffffff : 0x0

__m128 _mm_cmple_ss(__m128 a, __m128 b)

Compare for less-than-or-equal.
r0 := (a0 <= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmple_ps(__m128 a, __m128 b)

Compare for less-than-or-equal.
r0 := (a0 <= b0) ? 0xffffffff : 0x0
r1 := (a1 <= b1) ? 0xffffffff : 0x0
r2 := (a2 <= b2) ? 0xffffffff : 0x0
r3 := (a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

Compare for greater-than.
r0 := (a0 > b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

Compare for greater-than.
r0 := (a0 > b0) ? 0xffffffff : 0x0
r1 := (a1 > b1) ? 0xffffffff : 0x0
r2 := (a2 > b2) ? 0xffffffff : 0x0
r3 := (a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

Compare for greater-than-or-equal.
r0 := (a0 >= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

Compare for greater-than-or-equal.
r0 := (a0 >= b0) ? 0xffffffff : 0x0
r1 := (a1 >= b1) ? 0xffffffff : 0x0
r2 := (a2 >= b2) ? 0xffffffff : 0x0
r3 := (a3 >= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Compare for inequality.
r0 := (a0 != b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

Compare for inequality.
r0 := (a0 != b0) ? 0xffffffff : 0x0
r1 := (a1 != b1) ? 0xffffffff : 0x0
r2 := (a2 != b2) ? 0xffffffff : 0x0
r3 := (a3 != b3) ? 0xffffffff : 0x0

Intel® C++ Intrinsics Reference

229

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Compare for not-less-than.
r0 := !(a0 < b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

Compare for not-less-than.
r0 := !(a0 < b0) ? 0xffffffff : 0x0
r1 := !(a1 < b1) ? 0xffffffff : 0x0
r2 := !(a2 < b2) ? 0xffffffff : 0x0
r3 := !(a3 < b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

Compare for not-less-than-or-equal.
r0 := !(a0 <= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

Compare for not-less-than-or-equal.
r0 := !(a0 <= b0) ? 0xffffffff : 0x0
r1 := !(a1 <= b1) ? 0xffffffff : 0x0
r2 := !(a2 <= b2) ? 0xffffffff : 0x0
r3 := !(a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

Compare for not-greater-than.
r0 := !(a0 > b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

Compare for not-greater-than.
r0 := !(a0 > b0) ? 0xffffffff : 0x0
r1 := !(a1 > b1) ? 0xffffffff : 0x0
r2 := !(a2 > b2) ? 0xffffffff : 0x0
r3 := !(a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.
r0 := !(a0 >= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.
r0 := !(a0 >= b0) ? 0xffffffff : 0x0
r1 := !(a1 >= b1) ? 0xffffffff : 0x0
r2 := !(a2 >= b2) ? 0xffffffff : 0x0
r3 := !(a3 >= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

Compare for ordered.
r0 := (a0 ord? b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

Compare for ordered.
r0 := (a0 ord? b0) ? 0xffffffff : 0x0
r1 := (a1 ord? b1) ? 0xffffffff : 0x0
r2 := (a2 ord? b2) ? 0xffffffff : 0x0
r3 := (a3 ord? b3) ? 0xffffffff : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

230

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

Compare for unordered.
r0 := (a0 unord? b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

Compare for unordered.
r0 := (a0 unord? b0) ? 0xffffffff : 0x0
r1 := (a1 unord? b1) ? 0xffffffff : 0x0
r2 := (a2 unord? b2) ? 0xffffffff : 0x0
r3 := (a3 unord? b3) ? 0xffffffff : 0x0

int _mm_comieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are
equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b,
1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is
less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater
than b are equal, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

int _mm_comige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a
is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are
not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are
equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b,
1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is
less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

Intel® C++ Intrinsics Reference

231

int _mm_ucomigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater
than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a
is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are
not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

Conversion Operations for Streaming SIMD Extensions
The conversions operations are listed in the following table followed by a description of each
intrinsic with the most recent mnemonic naming convention. The alternate name is provided in
case you have used these intrinsics before.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic Name Alternate Name Corresponding Instruction

_mm_cvt_ss2si _mm_cvtss_si32 CVTSS2SI

_mm_cvt_ps2pi _mm_cvtps_pi32 CVTPS2PI

_mm_cvtt_ss2si _mm_cvttss_si32 CVTTSS2SI

_mm_cvtt_ps2pi _mm_cvttps_pi32 CVTTPS2PI

_mm_cvt_si2ss _mm_cvtsi32_ss CVTSI2SS

_mm_cvt_pi2ps _mm_cvtpi32_ps CVTTPS2PI

_mm_cvtpi16_ps composite

_mm_cvtpu16_ps composite

_mm_cvtpi8_ps composite

_mm_cvtpu8_ps composite

_mm_cvtpi32x2_ps composite

_mm_cvtps_pi16 composite

_mm_cvtps_pi8 composite

Intel® C++ Compiler for Linux* Systems User's Guide

232

int _mm_cvt_ss2si(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current
rounding mode.
r := (int)a0

__m64 _mm_cvt_ps2pi(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the
current rounding mode, returning the integers in packed form.
r0 := (int)a0
r1 := (int)a1

int _mm_cvtt_ss2si(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.
r := (int)a0

__m64 _mm_cvtt_ps2pi(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation,
returning the integers in packed form.
r0 := (int)a0
r1 := (int)a1

__m128 _mm_cvt_si2ss(__m128, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP
values are passed through from a.
r0 := (float)b
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cvt_pi2ps(__m128, __m64)

Convert the two 32-bit integer values in packed form in b to two SP FP values;
the upper two SP FP values are passed through from a.
r0 := (float)b0
r1 := (float)b1
r2 := a2
r3 := a3

__inline __m128 _mm_cvtpi16_ps(__m64 a)

Convert the four 16-bit signed integer values in a to four single precision FP
values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpu16_ps(__m64 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP
values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpi8_ps(__m64 a)

Convert the lower four 8-bit signed integer values in a to four single precision
FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

Intel® C++ Intrinsics Reference

233

__inline __m128 _mm_cvtpu8_ps(__m64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision
FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed
integer values in b to four single precision FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)b0
r3 := (float)b1

__inline __m64 _mm_cvtps_pi16(__m128 a)

Convert the four single precision FP values in a to four signed 16-bit integer
values.
r0 := (short)a0
r1 := (short)a1
r2 := (short)a2
r3 := (short)a3

__inline __m64 _mm_cvtps_pi8(__m128 a)

Convert the four single precision FP values in a to the lower four signed 8-bit
integer values of the result.
r0 := (char)a0
r1 := (char)a1
r2 := (char)a2
r3 := (char)a3

Load Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

__m128 _mm_load_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.
r0 := *p
r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load_ps1(float * p)

Loads a single SP FP value, copying it into all four words.
r0 := *p
r1 := *p
r2 := *p
r3 := *p

__m128 _mm_load_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.
r0 := p[0]
r1 := p[1]
r2 := p[2]
r3 := p[3]

Intel® C++ Compiler for Linux* Systems User's Guide

234

__m128 _mm_loadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.
r0 := p[0]
r1 := p[1]
r2 := p[2]
r3 := p[3]

__m128 _mm_loadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.
r0 := p[3]
r1 := p[2]
r2 := p[1]
r3 := p[0]

Set Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

__m128 _mm_set_ss(float w)

Sets the low word of an SP FP value to w and clears the upper three words.
r0 := w
r1 := r2 := r3 := 0.0

__m128 _mm_set_ps1(float w)

Sets the four SP FP values to w.
r0 := r1 := r2 := r3 := w

__m128 _mm_set_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.
r0 := w
r1 := x
r2 := y
r3 := z

__m128 _mm_setr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.
r0 := z
r1 := y
r2 := x
r3 := w

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.
r0 := r1 := r2 := r3 := 0.0

Intel® C++ Intrinsics Reference

235

Store Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

void _mm_store_ss(float * p, __m128 a)

Stores the lower SP FP value.
*p := a0

void _mm_store_ps1(float * p, __m128 a)

Stores the lower SP FP value across four words.
p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void _mm_store_ps(float *p, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.
p[0] := a0
p[1] := a1
p[2] := a2
p[3] := a3

void _mm_storeu_ps(float *p, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.
p[0] := a0
p[1] := a1
p[2] := a2
p[3] := a3

void _mm_storer_ps(float * p, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.
p[0] := a3
p[1] := a2
p[2] := a1
p[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed
through from a.
r0 := b0
r1 := a1
r2 := a2
r3 := a3

Cacheability Support Using Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic
execution (especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at
which the code detects the release of the lock. For dynamic scheduling, the PAUSE instruction
reduces the penalty of exiting from the spin-loop.

Intel® C++ Compiler for Linux* Systems User's Guide

236

Example of loop with the PAUSE instruction:

spin_loop:pause
cmp eax, A
jne spin_loop

In the above example, the program spins until memory location A matches the value in register
eax. The code sequence that follows shows a test-and-test-and-set. In this example, the spin
occurs only after the attempt to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop

Critical Section

// critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause;
// spin-loop hint
cmp 0, A ;
// check lock availability
jne spin_loop
jmp get_lock
// continue: other code

Note that the first branch is predicted to fall-through to the critical section in anticipation of
successfully gaining access to the lock. It is highly recommended that all spin-wait loops include
the PAUSE instruction. Since PAUSE is backwards compatible to all existing IA-32 processor
generations, a test for processor type (a CPUID test) is not needed. All legacy processors will
execute PAUSE as a NOP, but in processors which use the PAUSE as a hint there can be significant
performance benefit.

Integer Intrinsics Using Streaming SIMD Extensions
The integer intrinsics are listed in the table below followed by a description of each intrinsic with
the most recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_m_pextrw _mm_extract_pi16 Extract on of four words PEXTRW

_m_pinsrw _mm_insert_pi16 Insert a word PINSRW

_m_pmaxsw _mm_max_pi16 Compute the maximum PMAXSW

_m_pmaxub _mm_max_pu8 Compute the maximum,
unsigned

PMAXUB

Intel® C++ Intrinsics Reference

237

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_m_pminsw _mm_min_pi16 Compute the minimum PMINSW

_m_pminub _mm_min_pu8 Compute the minimum,
unsigned

PMINUB

_m_pmovmskb _mm_movemask_pi8 Create an eight-bit mask PMOVMSKB

_m_pmulhuw _mm_mulhi_pu16 Multiply, return high bits PMULHUW

_m_pshufw _mm_shuffle_pi16 Return a combination of
four words

PSHUFW

_m_maskmovq _mm_maskmove_si64 Conditional Store MASKMOVQ

_m_pavgb _mm_avg_pu8 Compute rounded average PAVGB

_m_pavgw _mm_avg_pu16 Compute rounded average PAVGW

_m_psadbw _mm_sad_pu8 Compute sum of absolute
differences

PSADBW

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

int _m_pextrw(__m64 a, int n)

Extracts one of the four words of a. The selector n must be an immediate.
r := (n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3
))

__m64 _m_pinsrw(__m64 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an
immediate.
r0 := (n==0) ? d : a0;
r1 := (n==1) ? d : a1;
r2 := (n==2) ? d : a2;
r3 := (n==3) ? d : a3;

__m64 _m_pmaxsw(__m64 a, __m64 b)

Computes the element-wise maximum of the words in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m64 _m_pmaxub(__m64 a, __m64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

Intel® C++ Compiler for Linux* Systems User's Guide

238

__m64 _m_pminsw(__m64 a, __m64 b)

Computes the element-wise minimum of the words in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m64 _m_pminub(__m64 a, __m64 b)

Computes the element-wise minimum of the unsigned bytes in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

int _m_pmovmskb(__m64 a)

Creates an 8-bit mask from the most significant bits of the bytes in a.
r := sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

__m64 _m_pmulhuw(__m64 a, __m64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-
bit intermediate results.
r0 := hiword(a0 * b0)
r1 := hiword(a1 * b1)
r2 := hiword(a2 * b2)
r3 := hiword(a3 * b3)

__m64 _m_pshufw(__m64 a, int n)

Returns a combination of the four words of a. The selector n must be an
immediate.
r0 := word (n&0x3) of a
r1 := word ((n>>2)&0x3) of a
r2 := word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

void _m_maskmovq(__m64 d, __m64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in
the selector n determines whether the corresponding byte in d will be stored.
if (sign(n0)) p[0] := d0
if (sign(n1)) p[1] := d1
...
if (sign(n7)) p[7] := d7

__m64 _m_pavgb(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned bytes in a and b.
t = (unsigned short)a0 + (unsigned short)b0
r0 = (t >> 1) | (t & 0x01)
...
t = (unsigned short)a7 + (unsigned short)b7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

__m64 _m_pavgw(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned words in a and b.
t = (unsigned int)a0 + (unsigned int)b0
r0 = (t >> 1) | (t & 0x01)
...
t = (unsigned word)a7 + (unsigned word)b7
r7 = (unsigned short)((t >> 1) | (t & 0x01))

Intel® C++ Intrinsics Reference

239

__m64 _m_psadbw(__m64 a, __m64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b,
returning he value in the lower word. The upper three words are cleared.
r0 = abs(a0-b0) +... + abs(a7-b7)
r1 = r2 = r3 = 0

Memory and Initialization Using Streaming SIMD Extensions
This section describes the load, set, and store operations, which let you load and store data
into memory. The load and set operations are similar in that both initialize __m128 data.
However, the set operations take a float argument and are intended for initialization with
constants, whereas the load operations take a floating point argument and are intended to mimic
the instructions for loading data from memory. The store operation assigns the initialized data
to the address.

The intrinsics are listed in the following table. Syntax and a brief description are contained the
following topics.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_mm_load_ss Load the low value and
clear the three high values

MOVSS

_mm_load_ps1 _mm_load1_ps Load one value into all four
words

MOVSS +
Shuffling

_mm_load_ps Load four values, address
aligned

MOVAPS

_mm_loadu_ps Load four values, address
unaligned

MOVUPS

_mm_loadr_ps Load four values, in
reverse order

MOVAPS +
Shuffling

_mm_set_ss Set the low value and clear
the three high values

Composite

_mm_set_ps1 _mm_set1_ps Set all four words with the
same value

Composite

_mm_set_ps Set four values, address
aligned

Composite

_mm_setr_ps Set four values, in reverse
order

Composite

_mm_setzero_ps Clear all four values Composite

_mm_store_ss Store the low value MOVSS

Intel® C++ Compiler for Linux* Systems User's Guide

240

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_mm_store_ps1 _mm_store1_ps Store the low value across
all four words. The address
must be 16-byte aligned.

Shuffling +
MOVSS

_mm_store_ps Store four values, address
aligned

MOVAPS

_mm_storeu_ps Store four values, address
unaligned

MOVUPS

_mm_storer_ps Store four values, in
reverse order

MOVAPS +
Shuffling

_mm_move_ss Set the low word, and pass
in three high values

MOVSS

_mm_getcsr Return register contents STMXCSR

_mm_setcsr Control Register LDMXCSR

_mm_prefetch

_mm_stream_pi

_mm_stream_ps

_mm_sfence

_mm_cvtss_f32

__m128 _mm_load_ss(float const*a)

Loads an SP FP value into the low word and clears the upper three words.
r0 := *a
r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load_ps1(float const*a)

Loads a single SP FP value, copying it into all four words.
r0 := *a
r1 := *a
r2 := *a
r3 := *a

__m128 _mm_load_ps(float const*a)

Loads four SP FP values. The address must be 16-byte-aligned.
r0 := a[0]
r1 := a[1]
r2 := a[2]
r3 := a[3]

Intel® C++ Intrinsics Reference

241

__m128 _mm_loadu_ps(float const*a)

Loads four SP FP values. The address need not be 16-byte-aligned.
r0 := a[0]
r1 := a[1]
r2 := a[2]
r3 := a[3]

__m128 _mm_loadr_ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.
r0 := a[3]
r1 := a[2]
r2 := a[1]
r3 := a[0]

__m128 _mm_set_ss(float a)

Sets the low word of an SP FP value to a and clears the upper three words.
r0 := c
r1 := r2 := r3 := 0.0

__m128 _mm_set_ps1(float a)

Sets the four SP FP values to a.
r0 := r1 := r2 := r3 := a

__m128 _mm_set_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs.
r0 := a
r1 := b
r2 := c
r3 := d

__m128 _mm_setr_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs in reverse order.
r0 := d
r1 := c
r2 := b
r3 := a

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.
r0 := r1 := r2 := r3 := 0.0

void _mm_store_ss(float *v, __m128 a)

Stores the lower SP FP value.
*v := a0

void _mm_store_ps1(float *v, __m128 a)

Stores the lower SP FP value across four words.
v[0] := a0
v[1] := a0
v[2] := a0
v[3] := a0

void _mm_store_ps(float *v, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.
v[0] := a0
v[1] := a1
v[2] := a2
v[3] := a3

Intel® C++ Compiler for Linux* Systems User's Guide

242

void _mm_storeu_ps(float *v, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.
v[0] := a0
v[1] := a1
v[2] := a2
v[3] := a3

void _mm_storer_ps(float *v, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.
v[0] := a3
v[1] := a2
v[2] := a1
v[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed
through from a.
r0 := b0
r1 := a1
r2 := a2
r3 := a3

unsigned int _mm_getcsr(void)

Returns the contents of the control register.

void _mm_setcsr(unsigned int i)

Sets the control register to the value specified.

void _mm_prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location
"closer" to the processor. The value sel specifies the type of prefetch
operation: the constants _MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2,
and _MM_HINT_NTA should be used for IA-32, corresponding to the type of
prefetch instruction. The constants _MM_HINT_T1, _MM_HINT_NT1,
_MM_HINT_NT2, and _MM_HINT_NTA should be used for Itanium®-based
systems.

void _mm_stream_pi(__m64 *p, __m64 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the
caches. This intrinsic requires you to empty the multimedia state for the mmx
register. See The EMMS Instruction: Why You Need It and When to Use It
topic.

void _mm_stream_ps(float *p, __m128 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the
caches. The address must be 16-byte-aligned.

void _mm_sfence(void)

(uses SFENCE) Guarantees that every preceding store is globally visible before
any subsequent store.

float _mm_cvtss_f32(__m128 a)

This intrinsic extracts a single precision floating point value from the first vector
element of an __m128. It does so in the most effecient manner possible in the
context used. This intrinsic doesn't map to any specific SSE instruction.

Intel® C++ Intrinsics Reference

243

Miscellaneous Intrinsics Using Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
Instruction

_mm_shuffle_ps Shuffle SHUFPS

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_loadh_pi Load High MOVHPS reg, mem

_mm_storeh_pi Store High MOVHPS mem, reg

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_loadl_pi Load Low MOVLPS reg, mem

_mm_storel_pi Store Low MOVLPS mem, reg

_mm_movemask_ps Create four-bit mask MOVMSKPS

__m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

Selects four specific SP FP values from a and b, based on the mask imm8. The
mask must be an immediate. See Macro Function for Shuffle Using Streaming
SIMD Extensions for a description of the shuffle semantics.

__m128 _mm_unpackhi_ps(__m128 a, __m128 b)

Selects and interleaves the upper two SP FP values from a and b.
r0 := a2
r1 := b2
r2 := a3
r3 := b3

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)

Selects and interleaves the lower two SP FP values from a and b.
r0 := a0
r1 := b0
r2 := a1
r3 := b1

__m128 _mm_loadh_pi(__m128, __m64 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.
r0 := a0
r1 := a1
r2 := *p0
r3 := *p1

Intel® C++ Compiler for Linux* Systems User's Guide

244

void _mm_storeh_pi(__m64 *p, __m128 a)

Stores the upper two SP FP values to the address p.
*p0 := a2
*p1 := a3

__m128 _mm_movehl_ps(__m128 a, __m128 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result.
The upper 2 SP FP values of a are passed through to the result.
r3 := a3
r2 := a2
r1 := b3
r0 := b2

__m128 _mm_movelh_ps(__m128 a, __m128 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result.
The lower 2 SP FP values of a are passed through to the result.
r3 := b1
r2 := b0
r1 := a1
r0 := a0

__m128 _mm_loadl_pi(__m128 a, __m64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p;
the upper two values are passed through from a.
r0 := *p0
r1 := *p1
r2 := a2
r3 := a3

void _mm_storel_pi(__m64 *p, __m128 a)

Stores the lower two SP FP values of a to the address p.
*p0 := a0
*p1 := a1

int _mm_movemask_ps(__m128 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.
r := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 |
sign(a0)

Using Streaming SIMD Extensions on Itanium® Architecture
The Streaming SIMD Extensions intrinsics provide access to Itanium® instructions for Streaming
SIMD Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are
equivalent both in name and functionality to the set of IA-32-based Streaming SIMD Extensions
intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided
by the Streaming SIMD Extensions. Keep the following issues in mind:

• Certain intrinsics are provided only for compatibility with previously-defined IA-32
intrinsics. Using them on Itanium-based systems probably leads to performance degradation.
See section below.

• Floating-point (FP) data loaded stored as __m128 objects must be 16-byte-aligned.

• Some intrinsics require that their arguments be immediates -- that is, constant integers
(literals), due to the nature of the instruction.

Intel® C++ Intrinsics Reference

245

Data Types

The new data type __m128 is used with the Streaming SIMD Extensions intrinsics. It represents a
128-bit quantity composed of four single-precision FP values. This corresponds to the 128-bit IA-
32 Streaming SIMD Extensions register.

The compiler aligns __m128 local data to 16-byte boundaries on the stack. Global data of these
types is also 16 byte-aligned. To align integer, float, or double arrays, you can use the
declspec alignment.

Because Itanium instructions treat the Streaming SIMD Extensions registers in the same way
whether you are using packed or scalar data, there is no __m32 data type to represent scalar data.
For scalar operations, use the __m128 objects and the "scalar" forms of the intrinsics; the
compiler and the processor implement these operations with 32-bit memory references. But, for
better performance the packed form should be substituting for the scalar form whenever possible.

The address of a __m128 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction
Set Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

Streaming SIMD Extensions intrinsics are defined for the __m128 data type, a 128-bit quantity
consisting of four single-precision FP values. SIMD instructions for Itanium-based systems
operate on 64-bit FP register quantities containing two single-precision floating-point values.
Thus, each __m128 operand is actually a pair of FP registers and therefore each intrinsic
corresponds to at least one pair of Itanium instructions operating on the pair of FP register
operands.

Compatibility versus Performance

Many of the Streaming SIMD Extensions intrinsics for Itanium-based systems were created for
compatibility with existing IA-32 intrinsics and not for performance. In some situations, intrinsic
usage that improved performance on IA-32 will not do so on Itanium-based systems. One reason
for this is that some intrinsics map nicely into the IA-32 instruction set but not into the Itanium
instruction set. Thus, it is important to differentiate between intrinsics which were implemented
for a performance advantage on Itanium-based systems, and those implemented simply to provide
compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to initially port
legacy code or in non-critical code sections:

• Any Streaming SIMD Extensions scalar intrinsic (_ss variety) - use packed (_ps)
version if possible

• comi and ucomi Streaming SIMD Extensions comparisons - these correspond to IA-32
COMISS and UCOMISS instructions only. A sequence of Itanium instructions are required
to implement these.

• Conversions in general are multi-instruction operations. These are particularly expensive:
_mm_cvtpi16_ps, _mm_cvtpu16_ps, _mm_cvtpi8_ps, _mm_cvtpu8_ps,
_mm_cvtpi32x2_ps, _mm_cvtps_pi16, _mm_cvtps_pi8

• Streaming SIMD Extensions utility intrinsic _mm_movemask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation
intrinsics (rcp and rsqrt) are much faster than the true div and sqrt intrinsics.

Intel® C++ Compiler for Linux* Systems User's Guide

246

Macro Function for Shuffle Using Streaming SIMD Extensions
The Streaming SIMD Extensions provide a macro function to help create constants that describe
shuffle operations. The macro takes four small integers (in the range of 0 to 3) and combines them
into an 8-bit immediate value used by the SHUFPS instruction. See the example below.

Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the first input
operand and which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Macro Functions to Read and Write the Control Registers
The following macro functions enable you to read and write bits to and from the control register.
For details, see Set Operations. For Itanium®-based systems, these macros do not allow you to
access all of the bits of the FPSR. See the descriptions for the getfpsr() and setfpsr()
intrinsics in the Native Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments

_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

 _MM_EXCEPT_DENORM

Macro Definitions
Write to and read from the sixth-least significant control
register bit, respectively.

_MM_EXCEPT_OVERFLOW

 _MM_EXCEPT_UNDERFLOW

 _MM_EXCEPT_INEXACT

Intel® C++ Intrinsics Reference

247

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

Exception Mask Macros Macro Arguments

_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

 _MM_MASK_DENORM

Macro Definitions
Write to and read from the seventh through twelfth
control register bits, respectively.
Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

 _MM_MASK_UNDERFLOW

 _MM_MASK_INEXACT

The following example masks the overflow and underflow exceptions and unmasks all other
exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

Rounding Mode Macro Arguments

_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

Macro Definition
Write to and read from bits thirteen and fourteen of the
control register.

_MM_ROUND_UP

 _MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO) {
/* Rounding mode is round toward zero */
}

Intel® C++ Compiler for Linux* Systems User's Guide

248

Flush-to-Zero Mode Macro Arguments

_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

Macro Function for Matrix Transposition
The Streaming SIMD Extensions also provide the following macro function to transpose a 4 by 4
matrix of single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

The arguments row0, row1, row2, and row3 are __m128 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments row0,
row1, row2, and row3 where row0 now holds column 0 of the original matrix, row1 now
holds column 1 of the original matrix, and so on.

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
_MM_TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

Intel® C++ Intrinsics Reference

249

Streaming SIMD Extensions 2
This section describes the C++ language-level features supporting the Intel® Pentium® 4
processor Streaming SIMD Extensions 2 in the Intel® C++ Compiler, which are divided into two
categories:

• Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory,
and initialization intrinsics for the double-precision floating-point data type (__m128d).

• Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the extended-precision integer data type (__m128i).

 Note

The Pentium 4 processor Streaming SIMD Extensions 2 intrinsics are defined only for IA-32
platforms, not Itanium®-based platforms. Pentium 4 processor Streaming SIMD Extensions 2
operate on 128 bit quantities -- 2 64-bit double precision floating point values. The Itanium
processor does not support parallel double precision computation, so Pentium 4 processor
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Streaming SIMD Extensions 2 External
Architecture Specification (EAS) and other Pentium 4 processor manuals available for download
from the developer.intel.com web site. You should be familiar with the hardware features provided
by the Streaming SIMD Extensions 2 when writing programs with the intrinsics. The following
are three important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly
supported by the instruction set. While these intrinsics are convenient programming aids, be
mindful of their implementation cost.

• Data loaded or stored as __m128d objects must be generally 16-byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Floating-point Arithmetic Operations for Streaming SIMD
Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 are listed in the following table
and are followed by descriptions of each intrinsic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Operation R0
Value

R1
Value

_mm_add_sd ADDSD Addition a0 [op] b0 a1

_mm_add_pd ADDPD Addition a0 [op] b0 a1 [op] b1

_mm_sub_sd SUBSD Subtraction a0 [op] b0 a1

_mm_sub_pd SUBPD Subtraction a0 [op] b0 a1 [op] b1

_mm_mul_sd MULSD Multiplication a0 [op] b0 a1

Intel® C++ Compiler for Linux* Systems User's Guide

250

Intrinsic
Name

Corresponding
Instruction

Operation R0
Value

R1
Value

_mm_mul_pd MULPD Multiplication a0 [op] b0 a1 [op] b1

_mm_div_sd DIVSD Division a0 [op] b0 a1

_mm_div_pd DIVPD Division a0 [op] b0 a1 [op] b1

_mm_sqrt_sd SQRTSD Computes Square Root a0 [op] b0 a1

_mm_sqrt_pd SQRTPD Computes Square Root a0 [op] b0 a1 [op] b1

_mm_min_sd MINSD Computes Minimum a0 [op] b0 a1

_mm_min_pd MINPD Computes Minimum a0 [op] b0 a1 [op] b1

_mm_max_sd MAXSD Computes Maximum a0 [op] b0 a1

_mm_max_pd MAXPD Computes Maximum a0 [op] b0 a1 [op] b1

__m128d _mm_add_sd(__m128d a, __m128d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the
upper DP FP value is passed through from a.
r0 := a0 + b0
r1 := a1

__m128d _mm_add_pd(__m128d a, __m128d b)

Adds the two DP FP values of a and b.
r0 := a0 + b0
r1 := a1 + b1

__m128d _mm_sub_sd(__m128d a, __m128d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed
through from a.
r0 := a0 - b0
r1 := a1

__m128d _mm_sub_pd(__m128d a, __m128d b)

Subtracts the two DP FP values of b from a.
r0 := a0 - b0
r1 := a1 - b1

__m128d _mm_mul_sd(__m128d a, __m128d b)

Multiplies the lower DP FP values of a and b. The upper DP FP is passed
through from a.
r0 := a0 * b0
r1 := a1

__m128d _mm_mul_pd(__m128d a, __m128d b)

Multiplies the two DP FP values of a and b.
r0 := a0 * b0
r1 := a1 * b1

Intel® C++ Intrinsics Reference

251

__m128d _mm_div_sd(__m128d a, __m128d b)

Divides the lower DP FP values of a and b. The upper DP FP value is passed
through from a.
r0 := a0 / b0
r1 := a1

__m128d _mm_div_pd(__m128d a, __m128d b)

Divides the two DP FP values of a and b.
r0 := a0 / b0
r1 := a1 / b1

__m128d _mm_sqrt_sd(__m128d a, __m128d b)

Computes the square root of the lower DP FP value of b. The upper DP FP
value is passed through from a.
r0 := sqrt(b0)
r1 := a1

__m128d _mm_sqrt_pd(__m128d a)

Computes the square roots of the two DP FP values of a.
r0 := sqrt(a0)
r1 := sqrt(a1)

__m128d _mm_min_sd(__m128d a, __m128d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP
value is passed through from a.
r0 := min (a0, b0)
r1 := a1

__m128d _mm_min_pd(__m128d a, __m128d b)

Computes the minima of the two DP FP values of a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)

__m128d _mm_max_sd(__m128d a, __m128d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP
FP value is passed through from a.
r0 := max (a0, b0)
r1 := a1

__m128d _mm_max_pd(__m128d a, __m128d b)

Computes the maxima of the two DP FP values of a and b.
r0 := max(a0, b0)
r1 := max(a1, b1)

Logical Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_and_pd(__m128d a, __m128d b)

(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.
r0 := a0 & b0
r1 := a1 & b1

__m128d _mm_andnot_pd(__m128d a, __m128d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the
bitwise NOT of the 128-bit value in a.
r0 := (~a0) & b0
r1 := (~a1) & b1

Intel® C++ Compiler for Linux* Systems User's Guide

252

__m128d _mm_or_pd(__m128d a, __m128d b)

(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.
r0 := a0 | b0
r1 := a1 | b1

__m128d _mm_xor_pd(__m128d a, __m128d b)

(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.
r0 := a0 ^ b0
r1 := a1 ^ b1

Comparison Operations for Streaming SIMD Extensions 2
Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP
values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP
FP values of a and b are compared, and a 64-bit mask is returned; the upper DP FP value is
passed through from a. The mask is set to 0xffffffffffffffff for each element where the
comparison is true and 0x0 where the comparison is false. The r following the instruction name
indicates that the operands to the instruction are reversed in the actual implementation. The
comparison intrinsics for the Streaming SIMD Extensions 2 are listed in the following table
followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Corresponding Instruction Compare For:

_mm_cmpeq_pd CMPEQPD Equality

_mm_cmplt_pd CMPLTPD Less Than

_mm_cmple_pd CMPLEPD Less Than or Equal

_mm_cmpgt_pd CMPLTPDr Greater Than

_mm_cmpge_pd CMPLEPDr Greater Than or Equal

_mm_cmpord_pd CMPORDPD Ordered

_mm_cmpunord_pd CMPUNORDPD Unordered

_mm_cmpneq_pd CMPNEQPD Inequality

_mm_cmpnlt_pd CMPNLTPD Not Less Than

_mm_cmpnle_pd CMPNLEPD Not Less Than or Equal

_mm_cmpngt_pd CMPNLTPDr Not Greater Than

_mm_cmpnge_pd CMPLEPDr Not Greater Than or Equal

_mm_cmpeq_sd CMPEQSD Equality

_mm_cmplt_sd CMPLTSD Less Than

Intel® C++ Intrinsics Reference

253

Intrinsic Name Corresponding Instruction Compare For:

_mm_cmple_sd CMPLESD Less Than or Equal

_mm_cmpgt_sd CMPLTSDr Greater Than

_mm_cmpge_sd CMPLESDr Greater Than or Equal

_mm_cmpord_sd CMPORDSD Ordered

_mm_cmpunord_sd CMPUNORDSD Unordered

_mm_cmpneq_sd CMPNEQSD Inequality

_mm_cmpnlt_sd CMPNLTSD Not Less Than

_mm_cmpnle_sd CMPNLESD Not Less Than or Equal

_mm_cmpngt_sd CMPNLTSDr Not Greater Than

_mm_cmpnge_sd CMPNLESDR Not Greater Than or Equal

_mm_comieq_sd COMISD Equality

_mm_comilt_sd COMISD Less Than

_mm_comile_sd COMISD Less Than or Equal

_mm_comigt_sd COMISD Greater Than

_mm_comige_sd COMISD Greater Than or Equal

_mm_comineq_sd COMISD Not Equal

_mm_ucomieq_sd UCOMISD Equality

_mm_ucomilt_sd UCOMISD Less Than

_mm_ucomile_sd UCOMISD Less Than or Equal

_mm_ucomigt_sd UCOMISD Greater Than

_mm_ucomige_sd UCOMISD Greater Than or Equal

_mm_ucomineq_sd UCOMISD Not Equal

Intel® C++ Compiler for Linux* Systems User's Guide

254

__m128d _mm_cmpeq_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for equality.
r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than b.
r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 < b1) ? 0xffffffffffffffff : 0x0

___m128d _mm_cmple_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than or equal to b.
r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than b.
r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than or equal to b.
r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 >= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for ordered.
r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 ord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for unordered.
r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 unord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpneq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for inequality.
r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 != b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than b.
r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 < b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than or equal to b.
r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than b.
r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.
r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 >= b1) ? 0xffffffffffffffff : 0x0

Intel® C++ Intrinsics Reference

255

__m128d _mm_cmpeq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP
value is passed through from a.
r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP
value is passed through from a.
r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := i1

__m128d _mm_cmple_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The
upper DP FP value is passed through from a.
r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP
FP value is passed through from a.
r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b.
The upper DP FP value is passed through from a.
r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP
value is passed through from a.
r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP
value is passed through from a.
r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpneq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP
value is passed through from a.
r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP
FP value is passed through from a.
r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than or equal to b.
The upper DP FP value is passed through from a.
r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

Intel® C++ Compiler for Linux* Systems User's Guide

256

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper
DP FP value is passed through from a.
r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b.
The upper DP FP value is passed through from a.
r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

int _mm_comieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are
equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than
b, 1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is
less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater
than b are equal, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

int _mm_comige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If
a is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are
not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are
equal, 1 is returned. Otherwise 0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than
b, 1 is returned. Otherwise 0 is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is
less than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

Intel® C++ Intrinsics Reference

257

int _mm_ucomigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater
than b are equal, 1 is returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If
a is greater than or equal to b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are
not equal, 1 is returned. Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

Conversion Operations for Streaming SIMD Extensions 2
Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as _mm_cvtpd_ps result in a loss of precision. The rounding mode used in
such cases is determined by the value in the MXCSR register. The default rounding mode is
round-to-nearest. Note that the rounding mode used by the C and C++ languages when performing
a type conversion is to truncate. The _mm_cvttpd_epi32 and _mm_cvttsd_si32 intrinsics
use the truncate rounding mode regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 are listed in the following
table followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Return
Type

Parameters

_mm_cvtpd_ps CVTPD2PS __m128 (__m128d a)

_mm_cvtps_pd CVTPS2PD __m128d (__m128 a)

_mm_cvtepi32_pd CVTDQ2PD __m128d (__m128i a)

_mm_cvtpd_epi32 CVTPD2DQ __m128i (__m128d a)

_mm_cvtsd_si32 CVTSD2SI int (__m128d a)

_mm_cvtsd_ss CVTSD2SS __m128 (__m128 a, __m128d b)

_mm_cvtsi32_sd CVTSI2SD __m128d (__m128d a, int b)

_mm_cvtss_sd CVTSS2SD __m128d (__m128d a, __m128 b)

_mm_cvttpd_epi32 CVTTPD2DQ __m128i (__m128d a)

_mm_cvttsd_si32 CVTTSD2SI int (__m128d a)

_mm_cvtpd_pi32 CVTPD2PI __m64 (__m128d a)

Intel® C++ Compiler for Linux* Systems User's Guide

258

Intrinsic
Name

Corresponding
Instruction

Return
Type

Parameters

_mm_cvttpd_pi32 CVTTPD2PI __m64 (__m128d a)

_mm_cvtpi32_pd CVTPI2PD __m128d (__m64 a)

_mm_cvtsd_f64 None double (__m128d a)

__m128 _mm_cvtpd_ps(__m128d a)

Converts the two DP FP values of a to SP FP values.
r0 := (float) a0
r1 := (float) a1
r2 := 0.0 ; r3 := 0.0

__m128d _mm_cvtps_pd(__m128 a)

Converts the lower two SP FP values of a to DP FP values.
r0 := (double) a0
r1 := (double) a1

__m128d _mm_cvtepi32_pd(__m128i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.
r0 := (double) a0
r1 := (double) a1

__m128i _mm_cvtpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.
r0 := (int) a0
r1 := (int) a1
r2 := 0x0 ; r3 := 0x0

int _mm_cvtsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.
r := (int) a0

__m128 _mm_cvtsd_ss(__m128 a, __m128d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values
in a are passed through.
r0 := (float) b0
r1 := a1; r2 := a2 ; r3 := a3

__m128d _mm_cvtsi32_sd(__m128d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value
in a is passed through.
r0 := (double) b
r1 := a1

__m128d _mm_cvtss_sd(__m128d a, __m128 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP
value in a is passed through.
r0 := (double) b0
r1 := a1

Intel® C++ Intrinsics Reference

259

__m128i _mm_cvttpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.
r0 := (int) a0
r1 := (int) a1
r2 := 0x0 ; r3 := 0x0

int _mm_cvttsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.
r := (int) a0

__m64 _mm_cvtpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.
r0 := (int) a0
r1 := (int) a1

__m64 _mm_cvttpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values using
truncate.
r0 := (int) a0
r1 := (int) a1

__m128d _mm_cvtpi32_pd(__m64 a)

Converts the two 32-bit signed integer values of a to DP FP values.
r0 := (double) a0
r1 := (double) a1

_mm_cvtsd_f64(__m128d a)

This intrinsic extracts a double precision floating point value from the first
vector element of an __m128d. It does so in the most efficient manner possible
in the context used. This intrinsic does not map to any specific SSE2 instruction.

Streaming SIMD Extensions 2 Floating-point Memory and
Initialization Operations

This section describes the load, set, and store operations, which let you load and store data
into memory. The load and set operations are similar in that both initialize __m128d data.
However, the set operations take a double argument and are intended for initialization with
constants, while the load operations take a double pointer argument and are intended to mimic
the instructions for loading data from memory. The store operation assigns the initialized data
to the address.

Note

There is no intrinsic for move operations. To move data from one register to another, a simple
assignment, A = B, suffices, where A and B are the source and target registers for the move
operation.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intel® C++ Compiler for Linux* Systems User's Guide

260

Load Operations for Streaming SIMD Extensions 2
The following load operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_load_pd(double const*dp)

(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte
aligned.
r0 := p[0]
r1 := p[1]

__m128d _mm_load1_pd(double const*dp)

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both
elements. The address p need not be 16-byte aligned.
r0 := *p
r1 := *p

__m128d _mm_loadr_pd(double const*dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The
address p must be 16-byte aligned.
r0 := p[1]
r1 := p[0]

__m128d _mm_loadu_pd(double const*dp)

(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte
aligned.

r0 := p[0]
r1 := p[1]

__m128d _mm_load_sd(double const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address
p need not be 16-byte aligned.
r0 := *p
r1 := 0.0

__m128d _mm_loadh_pd(__m128d a, double const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result.
The lower DP FP value is passed through from a. The address p need not be 16-
byte aligned.
r0 := a0
r1 := *p

__m128d _mm_loadl_pd(__m128d a, double const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result.
The upper DP FP value is passed through from a. The address p need not be 16-
byte aligned.
r0 := *p
r1 := a1

Intel® C++ Intrinsics Reference

261

Set Operations for Streaming SIMD Extensions 2
The following set operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_set_sd(double w)

(composite) Sets the lower DP FP value to w and sets the upper DP FP value to
zero.
r0 := w
r1 := 0.0

__m128d _mm_set1_pd(double w)

(composite) Sets the 2 DP FP values to w.
r0 := w
r1 := w

__m128d _mm_set_pd(double w, double x)

(composite) Sets the lower DP FP value to x and sets the upper DP FP value to
w.
r0 := x
r1 := w

__m128d _mm_setr_pd(double w, double x)

(composite) Sets the lower DP FP value to w and sets the upper DP FP value to
x.
r0 := w
r1 := x

__m128d _mm_setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.
r0 := 0.0
r1 := 0.0

__m128d _mm_move_sd(__m128d a, __m128d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The
upper DP FP value is passed through from a.
r0 := b0
r1 := a1

Store Operations for Streaming SIMD Extensions 2
The following store operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

void _mm_store_sd(double *dp, __m128d a)

(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be
16-byte aligned.
*dp := a0

void _mm_store1_pd(double *dp, __m128d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The
address dp must be 16-byte aligned.
dp[0] := a0
dp[1] := a0

Intel® C++ Compiler for Linux* Systems User's Guide

262

void _mm_store_pd(double *dp, __m128d a)

(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte
aligned.
dp[0] := a0
dp[1] := a1

void _mm_storeu_pd(double *dp, __m128d a)

(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte
aligned.
dp[0] := a0
dp[1] := a1

void _mm_storer_pd(double *dp, __m128d a)

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The
address dp must be 16-byte aligned.
dp[0] := a1
dp[1] := a0

void _mm_storeh_pd(double *dp, __m128d a)

(uses MOVHPD) Stores the upper DP FP value of a.
*dp := a1

void _mm_storel_pd(double *dp, __m128d a)

(uses MOVLPD) Stores the lower DP FP value of a.
*dp := a0

Miscellaneous Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

(uses UNPCKHPD) Interleaves the upper DP FP values of a and b.
r0 := a1
r1 := b1

__m128d _mm_unpacklo_pd(__m128d a, __m128d b)

(uses UNPCKLPD) Interleaves the lower DP FP values of a and b.
r0 := a0
r1 := b0

int _mm_movemask_pd(__m128d a)

(uses MOVMSKPD) Creates a two-bit mask from the sign bits of the two DP FP
values of a.
r := sign(a1) << 1 | sign(a0)

__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the
mask i. The mask must be an immediate. See Macro Function for Shuffle for a
description of the shuffle semantics.

Intel® C++ Intrinsics Reference

263

Integer Arithmetic Operations for Streaming SIMD Extensions 2
The integer arithmetic operations for Streaming SIMD Extensions 2 are listed in the following
table followed by their descriptions. The packed arithmetic intrinsics for Streaming SIMD
Extensions 2 are listed in the Floating-point Arithmetic Operations topic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Instruction Operation

_mm_add_epi8 PADDB Addition

_mm_add_epi16 PADDW Addition

_mm_add_epi32 PADDD Addition

_mm_add_si64 PADDQ Addition

_mm_add_epi64 PADDQ Addition

_mm_adds_epi8 PADDSB Addition

_mm_adds_epi16 PADDSW Addition

_mm_adds_epu8 PADDUSB Addition

_mm_adds_epu16 PADDUSW Addition

_mm_avg_epu8 PAVGB Computes Average

_mm_avg_epu16 PAVGW Computes Average

_mm_madd_epi16 PMADDWD Multiplication/Addition

_mm_max_epi16 PMAXSW Computes Maxima

_mm_max_epu8 PMAXUB Computes Maxima

_mm_min_epi16 PMINSW Computes Minima

_mm_min_epu8 PMINUB Computes Minima

_mm_mulhi_epi16 PMULHW Multiplication

_mm_mulhi_epu16 PMULHUW Multiplication

_mm_mullo_epi16 PMULLW Multiplication

_mm_mul_su32 PMULUDQ Multiplication

_mm_mul_epu32 PMULUDQ Multiplication

Intel® C++ Compiler for Linux* Systems User's Guide

264

Intrinsic Instruction Operation

_mm_sad_epu8 PSADBW Computes Difference/Adds

_mm_sub_epi8 PSUBB Subtraction

_mm_sub_epi16 PSUBW Subtraction

_mm_sub_epi32 PSUBD Subtraction

_mm_sub_si64 PSUBQ Subtraction

_mm_sub_epi64 PSUBQ Subtraction

_mm_subs_epi8 PSUBSB Subtraction

_mm_subs_epi16 PSUBSW Subtraction

_mm_subs_epu8 PSUBUSB Subtraction

_mm_subs_epu16 PSUBUSW Subtraction

__mm128i _mm_add_epi8(__m128i a, __m128i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned
8-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1
...
r15 := a15 + b15

__mm128i _mm_add_epi16(__m128i a, __m128i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned
16-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1
...
r7 := a7 + b7

__m128i _mm_add_epi32(__m128i a, __m128i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned
32-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1
r2 := a2 + b2
r3 := a3 + b3

__m64 _mm_add_si64(__m64 a, __m64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit
integer b.
r := a + b

Intel® C++ Intrinsics Reference

265

__m128i _mm_add_epi64(__m128i a, __m128i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned
64-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1

__m128i _mm_adds_epi8(__m128i a, __m128i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using
saturating arithmetic.
r0 := SignedSaturate(a0 + b0)
r1 := SignedSaturate(a1 + b1)
...
r15 := SignedSaturate(a15 + b15)

__m128i _mm_adds_epi16(__m128i a, __m128i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using
saturating arithmetic.
r0 := SignedSaturate(a0 + b0)
r1 := SignedSaturate(a1 + b1)
...
r7 := SignedSaturate(a7 + b7)

__m128i _mm_adds_epu8(__m128i a, __m128i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b
using saturating arithmetic.
r0 := UnsignedSaturate(a0 + b0)
r1 := UnsignedSaturate(a1 + b1)
...
r15 := UnsignedSaturate(a15 + b15)

__m128i _mm_adds_epu16(__m128i a, __m128i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b
using saturating arithmetic.
r0 := UnsignedSaturate(a0 + b0)
r1 := UnsignedSaturate(a1 + b1)
...
r15 := UnsignedSaturate(a7 + b7)

__m128i _mm_avg_epu8(__m128i a, __m128i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned
8-bit integers in b and rounds.
r0 := (a0 + b0) / 2
r1 := (a1 + b1) / 2
...
r15 := (a15 + b15) / 2

__m128i _mm_avg_epu16(__m128i a, __m128i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned
16-bit integers in b and rounds.
r0 := (a0 + b0) / 2
r1 := (a1 + b1) / 2
...
r7 := (a7 + b7) / 2

Intel® C++ Compiler for Linux* Systems User's Guide

266

__m128i _mm_madd_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers
from b. Adds the signed 32-bit integer results pairwise and packs the 4 signed
32-bit integer results.
r0 := (a0 * b0) + (a1 * b1)
r1 := (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * b5)
r3 := (a6 * b6) + (a7 * b7)

__m128i _mm_max_epi16(__m128i a, __m128i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.
r0 := max(a0, b0)
r1 := max(a1, b1)
...
r7 := max(a7, b7)

__m128i _mm_max_epu8(__m128i a, __m128i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
16 unsigned 8-bit integers from b.
r0 := max(a0, b0)
r1 := max(a1, b1)
...
r15 := max(a15, b15)

__m128i _mm_min_epi16(__m128i a, __m128i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

__m128i _mm_min_epu8(__m128i a, __m128i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
16 unsigned 8-bit integers from b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r15 := min(a15, b15)

__m128i _mm_mulhi_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers
from b. Packs the upper 16-bits of the 8 signed 32-bit results.
r0 := (a0 * b0)[31:16]
r1 := (a1 * b1)[31:16]
...
r7 := (a7 * b7)[31:16]

__m128i _mm_mulhi_epu16(__m128i a, __m128i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit
integers from b. Packs the upper 16-bits of the 8 unsigned 32-bit results.

r0 := (a0 * b0)[31:16]
r1 := (a1 * b1)[31:16]
...
r7 := (a7 * b7)[31:16]

Intel® C++ Intrinsics Reference

267

__m128i_mm_mullo_epi16(__m128i a, __m128i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
unsigned 16-bit integers from b. Packs the lower 16-bits of the 8 signed or
unsigned 32-bit results.
r0 := (a0 * b0)[15:0]
r1 := (a1 * b1)[15:0]
...
r7 := (a7 * b7)[15:0]

__m64 _mm_mul_su32(__m64 a, __m64 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b,
and returns the 64-bit integer result.
r := a0 * b0

__m128i _mm_mul_epu32(__m128i a, __m128i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from
b. Packs the 2 unsigned 64-bit integer results.
r0 := a0 * b0
r1 := a2 * b2

__m128i _mm_sad_epu8(__m128i a, __m128i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and
the 16 unsigned 8-bit integers from b. Sums the upper 8 differences and lower 8
differences, and packs the resulting 2 unsigned 16-bit integers into the upper and
lower 64-bit elements.
r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)
r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0
r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)
r5 := 0x0 ; r6 := 0x0 ; r7 := 0x0

__m128i _mm_sub_epi8(__m128i a, __m128i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or
unsigned 8-bit integers of a.
r0 := a0 - b0
r1 := a1 - b1
...
r15 := a15 - b15

__m128i_mm_sub_epi16(__m128i a, __m128i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or
unsigned 16-bit integers of a.
r0 := a0 - b0
r1 := a1 - b1
...
r7 := a7 - b7

__m128i _mm_sub_epi32(__m128i a, __m128i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
unsigned 32-bit integers of a.
r0 := a0 - b0
r1 := a1 - b1
r2 := a2 - b2
r3 := a3 - b3

__m64 _mm_sub_si64 (__m64 a, __m64 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned
64-bit integer a.
r := a - b

Intel® C++ Compiler for Linux* Systems User's Guide

268

__m128i _mm_sub_epi64(__m128i a, __m128i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or
unsigned 64-bit integers in a.
r0 := a0 - b0
r1 := a1 - b1

__m128i _mm_subs_epi8(__m128i a, __m128i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a
using saturating arithmetic.
r0 := SignedSaturate(a0 - b0)
r1 := SignedSaturate(a1 - b1)
...
r15 := SignedSaturate(a15 - b15)

__m128i _mm_subs_epi16(__m128i a, __m128i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a
using saturating arithmetic.
r0 := SignedSaturate(a0 - b0)
r1 := SignedSaturate(a1 - b1)
...
r7 := SignedSaturate(a7 - b7)

__m128i _mm_subs_epu8(__m128i a, __m128i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers
of a using saturating arithmetic.
r0 := UnsignedSaturate(a0 - b0)
r1 := UnsignedSaturate(a1 - b1)
...
r15 := UnsignedSaturate(a15 - b15)

__m128i _mm_subs_epu16(__m128i a, __m128i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers
of a using saturating arithmetic.
r0 := UnsignedSaturate(a0 - b0)
r1 := UnsignedSaturate(a1 - b1)
...
r7 := UnsignedSaturate(a7 - b7)

Integer Logical Operations for Streaming SIMD Extensions 2
The following four logical-operation intrinsics and their respective instructions are functional as
part of Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_and_si128(__m128i a, __m128i b)

(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-
bit value in b.
r := a & b

__m128i _mm_andnot_si128(__m128i a, __m128i b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the
bitwise NOT of the 128-bit value in a.
r := (~a) & b

Intel® C++ Intrinsics Reference

269

__m128i _mm_or_si128(__m128i a, __m128i b)

(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit
value in b.
r := a | b

__m128i _mm_xor_si128(__m128i a, __m128i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-
bit value in b.
r := a ^ b

Integer Shift Operations for Streaming SIMD Extensions 2
The shift-operation intrinsics for Streaming SIMD Extensions 2 and the description for each are
listed in the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Shift Direction Shift Type Corresponding Instruction

_mm_slli_si128 Left Logical PSLLDQ

_mm_slli_epi16 Left Logical PSLLW

_mm_sll_epi16 Left Logical PSLLW

_mm_slli_epi32 Left Logical PSLLD

_mm_sll_epi32 Left Logical PSLLD

_mm_slli_epi64 Left Logical PSLLQ

_mm_sll_epi64 Left Logical PSLLQ

_mm_srai_epi16 Right Arithmetic PSRAW

_mm_sra_epi16 Right Arithmetic PSRAW

_mm_srai_epi32 Right Arithmetic PSRAD

_mm_sra_epi32 Right Arithmetic PSRAD

_mm_srli_si128 Right Logical PSRLDQ

_mm_srli_epi16 Right Logical PSRLW

_mm_srl_epi16 Right Logical PSRLW

_mm_srli_epi32 Right Logical PSRLD

_mm_srl_epi32 Right Logical PSRLD

_mm_srli_epi64 Right Logical PSRLQ

Intel® C++ Compiler for Linux* Systems User's Guide

270

Intrinsic Shift Direction Shift Type Corresponding Instruction

_mm_srl_epi64 Right Logical PSRLQ

__m128i _mm_slli_si128(__m128i a, int imm)

Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must
be an immediate.
r := a << (imm * 8)

__m128i _mm_slli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
shifting in zeros.
r0 := a0 << count
r1 := a1 << count
...
r7 := a7 << count

__m128i _mm_sll_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
shifting in zeros.
r0 := a0 << count
r1 := a1 << count
...
r7 := a7 << count

__m128i _mm_slli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
shifting in zeros.
r0 := a0 << count
r1 := a1 << count
r2 := a2 << count
r3 := a3 << count

__m128i _mm_sll_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
shifting in zeros.
r0 := a0 << count
r1 := a1 << count
r2 := a2 << count
r3 := a3 << count

__m128i _mm_slli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
shifting in zeros.
r0 := a0 << count
r1 := a1 << count

__m128i _mm_sll_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
shifting in zeros.
r0 := a0 << count
r1 := a1 << count

Intel® C++ Intrinsics Reference

271

__m128i _mm_srai_epi16(__m128i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the
sign bit.
r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count

__m128i _mm_sra_epi16(__m128i a, __m128i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the
sign bit.
r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count

__m128i _mm_srai_epi32(__m128i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the
sign bit.
r0 := a0 >> count
r1 := a1 >> count
r2 := a2 >> count
r3 := a3 >> count

__m128i _mm_sra_epi32(__m128i a, __m128i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the
sign bit.
r0 := a0 >> count
r1 := a1 >> count
r2 := a2 >> count
r3 := i3 >> count

__m128i _mm_srli_si128(__m128i a, int imm)

Shifts the 128-bit value in a right by imm bytes while shifting in zeros. imm
must be an immediate.
r := srl(a, imm*8)

__m128i _mm_srli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while
shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
...
r7 := srl(a7, count)

__m128i _mm_srl_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while
shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
...
r7 := srl(a7, count)

__m128i _mm_srli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while
shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
r2 := srl(a2, count)
r3 := srl(a3, count)

Intel® C++ Compiler for Linux* Systems User's Guide

272

__m128i _mm_srl_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while
shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
r2 := srl(a2, count)
r3 := srl(a3, count)

__m128i _mm_srli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while
shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)

__m128i _mm_srl_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while
shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)

Integer Comparison Operations for Streaming SIMD Extensions
2

The comparison intrinsics for Streaming SIMD Extensions 2 and descriptions for each are listed in
the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Instruction Comparison Elements Size of
Elements

_mm_cmpeq_epi8 PCMPEQB Equality 16 8

_mm_cmpeq_epi16 PCMPEQW Equality 8 16

_mm_cmpeq_epi32 PCMPEQD Equality 4 32

_mm_cmpgt_epi8 PCMPGTB Greater Than 16 8

_mm_cmpgt_epi16 PCMPGTW Greater Than 8 16

_mm_cmpgt_epi32 PCMPGTD Greater Than 4 32

_mm_cmplt_epi8 PCMPGTBr Less Than 16 8

_mm_cmplt_epi16 PCMPGTWr Less Than 8 16

_mm_cmplt_epi32 PCMPGTDr Less Than 4 32

Intel® C++ Intrinsics Reference

273

__m128i _mm_cmpeq_epi8(__m128i a, __m128i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
unsigned 8-bit integers in b for equality.
r0 := (a0 == b0) ? 0xff : 0x0
r1 := (a1 == b1) ? 0xff : 0x0
...
r15 := (a15 == b15) ? 0xff : 0x0

__m128i _mm_cmpeq_epi16(__m128i a, __m128i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
unsigned 16-bit integers in b for equality.

r0 := (a0 == b0) ? 0xffff : 0x0
r1 := (a1 == b1) ? 0xffff : 0x0
...
r7 := (a7 == b7) ? 0xffff : 0x0

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or
unsigned 32-bit integers in b for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffff : 0x0
r2 := (a2 == b2) ? 0xffffffff : 0x0
r3 := (a3 == b3) ? 0xffffffff : 0x0

__m128i _mm_cmpgt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b
for greater than.

r0 := (a0 > b0) ? 0xff : 0x0
r1 := (a1 > b1) ? 0xff : 0x0
...
r15 := (a15 > b15) ? 0xff : 0x0

__m128i _mm_cmpgt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b
for greater than.
r0 := (a0 > b0) ? 0xffff : 0x0
r1 := (a1 > b1) ? 0xffff : 0x0
...
r7 := (a7 > b7) ? 0xffff : 0x0

__m128i _mm_cmpgt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b
for greater than.
r0 := (a0 > b0) ? 0xffff : 0x0
r1 := (a1 > b1) ? 0xffff : 0x0
r2 := (a2 > b2) ? 0xffff : 0x0
r3 := (a3 > b3) ? 0xffff : 0x0

__m128i _mm_cmplt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b
for less than.
r0 := (a0 < b0) ? 0xff : 0x0
r1 := (a1 < b1) ? 0xff : 0x0
...
r15 := (a15 < b15) ? 0xff : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

274

__m128i _mm_cmplt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b
for less than.
r0 := (a0 < b0) ? 0xffff : 0x0
r1 := (a1 < b1) ? 0xffff : 0x0
...
r7 := (a7 < b7) ? 0xffff : 0x0

__m128i _mm_cmplt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b
for less than.
r0 := (a0 < b0) ? 0xffff : 0x0
r1 := (a1 < b1) ? 0xffff : 0x0
r2 := (a2 < b2) ? 0xffff : 0x0
r3 := (a3 < b3) ? 0xffff : 0x0

Conversion Operations for Streaming SIMD Extensions 2
The following two conversion intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_cvtsi32_si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an
__m128i object. Copies the sign bit of a into the upper 96 bits of the
__m128i object.
r0 := a
r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0

int _mm_cvtsi128_si32(__m128i a)

(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.
r := a0

__m128 _mm_cvtepi32_ps(__m128i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.
r0 := (float) a0
r1 := (float) a1
r2 := (float) a2
r3 := (float) a3

__m128i _mm_cvtps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.
r0 := (int) a0
r1 := (int) a1
r2 := (int) a2
r3 := (int) a3

__m128i _mm_cvttps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.
r0 := (int) a0
r1 := (int) a1
r2 := (int) a2
r3 := (int) a3

Intel® C++ Intrinsics Reference

275

Macro Function for Shuffle
The Streaming SIMD Extensions 2 provide a macro function to help create constants that describe
shuffle operations. The macro takes two small integers (in the range of 0 to 1) and combines them
into an 2-bit immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

You can view the two integers as selectors for choosing which two words from the first input
operand and which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Cacheability Support Operations for Streaming SIMD Extensions
2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

void _mm_stream_pd(double *p, __m128d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches.
The address p must be 16-byte aligned. If the cache line containing address p is
already in the cache, the cache will be updated.
p[0] := a0
p[1] := a1

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache
line containing address p is already in the cache, the cache will be updated.
Address p must be 16-byte aligned.
*p := a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache
line containing address p is already in the cache, the cache will be updated.
*p := a

void _mm_clflush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the
coherency domain.

void _mm_lfence(void)

Guarantees that every load instruction that precedes, in program order, the load
fence instruction is globally visible before any load instruction which follows
the fence in program order.

Intel® C++ Compiler for Linux* Systems User's Guide

276

void _mm_mfence(void)

Guarantees that every memory access that precedes, in program order, the
memory fence instruction is globally visible before any memory instruction
which follows the fence in program order.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific
amount of time. The instruction does not modify the architectural state. This
intrinsic provides especially significant performance gain and described in more
detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic
execution (especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at
which the code detects the release of the lock. For dynamic scheduling, the PAUSE instruction
reduces the penalty of exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin loop:pause
cmp eax, A
jne spin_loop

In the above example, the program spins until memory location A matches the value in register
eax. The code sequence that follows shows a test-and-test-and-set. In this example, the spin
occurs only after the attempt to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop
critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause ; Spin-loop hint
cmp 0, A ; Check lock availability
jne spin_loop
jmp get_lock
continue:

Note that the first branch is predicted to fall-through to the critical section in anticipation of
successfully gaining access to the lock. It is highly recommended that all spin-wait loops include
the PAUSE instruction. Since PAUSE is backwards compatible to all existing IA-32 processor
generations, a test for processor type (a CPUID test) is not needed. All legacy processors will
execute PAUSE as a NOP, but in processors which use the PAUSE as a hint there can be significant
performance benefit.

Intel® C++ Intrinsics Reference

277

Miscellaneous Operations for Streaming SIMD Extensions 2
The miscellaneous intrinsics for Streaming SIMD Extensions 2 are listed in the following table
followed by their descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Corresponding
Instruction

Operation

_mm_packs_epi16 PACKSSWB Packed Saturation

_mm_packs_epi32 PACKSSDW Packed Saturation

_mm_packus_epi16 PACKUSWB Packed Saturation

_mm_extract_epi16 PEXTRW Extraction

_mm_insert_epi16 PINSRW Insertion

_mm_movemask_epi8 PMOVMSKB Mask Creation

_mm_shuffle_epi32 PSHUFD Shuffle

_mm_shufflehi_epi16 PSHUFHW Shuffle

_mm_shufflelo_epi16 PSHUFLW Shuffle

_mm_unpackhi_epi8 PUNPCKHBW Interleave

_mm_unpackhi_epi16 PUNPCKHWD Interleave

_mm_unpackhi_epi32 PUNPCKHDQ Interleave

_mm_unpackhi_epi64 PUNPCKHQDQ Interleave

_mm_unpacklo_epi8 PUNPCKLBW Interleave

_mm_unpacklo_epi16 PUNPCKLWD Interleave

_mm_unpacklo_epi32 PUNPCKLDQ Interleave

_mm_unpacklo_epi64 PUNPCKLQDQ Interleave

_mm_movepi64_pi64 MOVDQ2Q move

_m128i_mm_movpi64_epi64 MOVQ2DQ move

_mm_move_epi64 MOVQ move

Intel® C++ Compiler for Linux* Systems User's Guide

278

__m128i _mm_packs_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
saturates.
r0 := SignedSaturate(a0)
r1 := SignedSaturate(a1)
...
r7 := SignedSaturate(a7)
r8 := SignedSaturate(b0)
r9 := SignedSaturate(b1)
...
r15 := SignedSaturate(b7)

__m128i _mm_packs_epi32(__m128i a, __m128i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and
saturates.
r0 := SignedSaturate(a0)
r1 := SignedSaturate(a1)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(b1)
r6 := SignedSaturate(b2)
r7 := SignedSaturate(b3)

__m128i _mm_packus_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers
and saturates.
r0 := UnsignedSaturate(a0)
r1 := UnsignedSaturate(a1)
...
r7 := UnsignedSaturate(a7)
r8 := UnsignedSaturate(b0)
r9 := UnsignedSaturate(b1)
...
r15 := UnsignedSaturate(b7)

int _mm_extract_epi16(__m128i a, int imm)

Extracts the selected signed or unsigned 16-bit integer from a and zero extends.
The selector imm must be an immediate.
r := (imm == 0) ? a0 :
((imm == 1) ? a1 :
...
(imm == 7) ? a7)

__m128i _mm_insert_epi16(__m128i a, int b, int imm)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The
selector imm must be an immediate.
r0 := (imm == 0) ? b : a0;
r1 := (imm == 1) ? b : a1;
...
r7 := (imm == 7) ? b : a7;

int _mm_movemask_epi8(__m128i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned
8-bit integers in a and zero extends the upper bits.
r := a15[7] << 15 |
a14[7] << 14 |
...
a1[7] << 1 |
a0[7]

Intel® C++ Intrinsics Reference

279

__m128i _mm_shuffle_epi32(__m128i a, int imm)

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. The
shuffle value, imm, must be an immediate. See Macro Function for Shuffle for a
description of shuffle semantics.

__m128i _mm_shufflehi_epi16(__m128i a, int imm)

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by imm.
The shuffle value, imm, must be an immediate. See Macro Function for Shuffle
for a description of shuffle semantics.

__m128i _mm_shufflelo_epi16(__m128i a, int imm)

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by imm.
The shuffle value, imm, must be an immediate. See Macro Function for Shuffle
for a description of shuffle semantics.

__m128i _mm_unpackhi_epi8(__m128i a, __m128i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8
signed or unsigned 8-bit integers in b.
r0 := a8 ; r1 := b8
r2 := a9 ; r3 := b9
...
r14 := a15 ; r15 := b15

__m128i _mm_unpackhi_epi16(__m128i a, __m128i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4
signed or unsigned 16-bit integers in b.
r0 := a4 ; r1 := b4
r2 := a5 ; r3 := b5
r4 := a6 ; r5 := b6
r6 := a7 ; r7 := b7

__m128i _mm_unpackhi_epi32(__m128i a, __m128i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2
signed or unsigned 32-bit integers in b.
r0 := a2 ; r1 := b2
r2 := a3 ; r3 := b3

__m128i _mm_unpackhi_epi64(__m128i a, __m128i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper
signed or unsigned 64-bit integer in b.
r0 := a1 ; r1 := b1

__m128i _mm_unpacklo_epi8(__m128i a, __m128i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8
signed or unsigned 8-bit integers in b.
r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1
...
r14 := a7 ; r15 := b7

__m128i _mm_unpacklo_epi16(__m128i a, __m128i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4
signed or unsigned 16-bit integers in b.
r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1
r4 := a2 ; r5 := b2
r6 := a3 ; r7 := b3

Intel® C++ Compiler for Linux* Systems User's Guide

280

__m128i _mm_unpacklo_epi32(__m128i a, __m128i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2
signed or unsigned 32-bit integers in b.
r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1

__m128i _mm_unpacklo_epi64(__m128i a, __m128i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower
signed or unsigned 64-bit integer in b.
r0 := a0 ; r1 := b0

__m64 _mm_movepi64_pi64(__m128i a)

Returns the lower 64 bits of a as an __m64 type.
r0 := a0 ;

__128i _mm_movpi64_pi64(__m64 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.
r0 := a0 ; r1 := 0X0 ;

__128i _mm_move_epi64(__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.
r0 := a0 ; r1 := 0X0 ;

Integer Memory and Initialization for Streaming SIMD Extensions
2

The integer load, set, and store intrinsics and their respective instructions provide memory
and initialization operations for the Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

• Load Operations

• Set Operations

• Store Operations

Integer Load Operations for Streaming SIMD Extensions 2
The following load operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_load_si128(__m128i const*p)

(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.
r := *p

__m128i _mm_loadu_si128(__m128i const*p)

(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.
r := *p

__m128i _mm_loadl_epi64(__m128i const*p)

(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower
64 bits of the result, zeroing the upper 64 bits of the result.
r0:= *p[63:0]
r1:=0x0

Intel® C++ Intrinsics Reference

281

Integer Set Operations for Streaming SIMD Extensions 2
The following set operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_set_epi64(__m64 q1, __m64 q0)

Sets the 2 64-bit integer values.
r0 := q0
r1 := q1

__m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.
r0 := i0
r1 := i1
r2 := i2
r3 := i3

__m128i _mm_set_epi16(short w7, short w6, short w5, short w4,
short w3, short w2, short w1, short w0)

Sets the 8 signed 16-bit integer values.
r0 := w0
r1 := w1
...
r7 := w7

__m128i _mm_set_epi8(char b15, char b14, char b13, char b12, char
b11, char b10, char b9, char b8, char b7, char b6, char b5, char
b4, char b3, char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values.
r0 := b0
r1 := b1
...
r15 := b15

__m128i _mm_set1_epi64(__m64 q)

Sets the 2 64-bit integer values to q.
r0 := q
r1 := q

__m128i _mm_set1_epi32(int i)

Sets the 4 signed 32-bit integer values to i.
r0 := i
r1 := i
r2 := i
r3 := i

__m128i _mm_set1_epi16(short w)

Sets the 8 signed 16-bit integer values to w.
r0 := w
r1 := w
...
r7 := w

__m128i _mm_set1_epi8(char b)

Sets the 16 signed 8-bit integer values to b.
r0 := b
r1 := b
...
r15 := b

Intel® C++ Compiler for Linux* Systems User's Guide

282

__m128i _mm_setr_epi64(__m64 q0, __m64 q1)

Sets the 2 64-bit integer values in reverse order.
r0 := q0
r1 := q1

__m128i _mm_setr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.
r0 := i0
r1 := i1
r2 := i2
r3 := i3

__m128i _mm_setr_epi16(short w0, short w1, short w2, short w3,
short w4, short w5, short w6, short w7)

Sets the 8 signed 16-bit integer values in reverse order.
r0 := w0
r1 := w1
...
r7 := w7

__m128i _mm_setr_epi8(char b15, char b14, char b13, char b12, char
b11, char b10, char b9, char b8, char b7, char b6, char b5, char
b4, char b3, char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.
r0 := b0
r1 := b1
...
r15 := b15

__m128i _mm_setzero_si128()

Sets the 128-bit value to zero.
r := 0x0

Integer Store Operations for Streaming SIMD Extensions 2
The following store operation intrinsics and their respective instructions are functional in the
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

void _mm_store_si128(__m128i *p, __m128i b)

(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.
*p := a

void _mm_storeu_si128(__m128i *p, __m128i b)

(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.
*p := a

void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The
high bit of each byte in the selector n determines whether the corresponding
byte in d will be stored. Address p need not be 16-byte aligned.
if (n0[7]) p[0] := d0
if (n1[7]) p[1] := d1
...
if (n15[7]) p[15] := d15

void _mm_storel_epi64(__m128i *p, __m128i q)

(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.
*p[63:0]:=a0

Intel® C++ Intrinsics Reference

283

New IA-32 Intrinsics
The Intel C++ intrinsics listed in this section are designed for the Intel® Pentium® 4 processor
with Streaming SIMD Extensions 3 (SSE3). They will not function correctly on other IA-32
processors.

• Macro Functions

• Floating-point Vector Intrinsics

• Integer Vector Intrinsics

• Miscellaneous Intrinsics

Macro Functions
The macro function intrinsics listed below are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

_MM_SET_DENORMALS_ZERO_MODE(x)

Macro arguments: one of __MM_DENORMALS_ZERO_ON,
_MM_DENORMALS_ZERO_OFF
This causes "denormals are zero" mode to be turned on or off by setting
the appropriate bit of the control register.

_MM_GET_DENORMALS_ZERO_MODE()

No arguments. This returns the current value of the denormals are zero mode bit
of the control register.

Floating-point Vector Intrinsics
The floating-point intrinsics listed below are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

Single-precision Floating-point Vector Intrinsics
extern __m128 _mm_addsub_ps(__m128 a, __m128 b);

Subtracts even vector elements while adding odd vector elements.
r0 := a0 - b0;
r1 := a1 + b1;
r2 := a2 - b2;
r3 := a3 + b3;

extern __m128 _mm_hadd_ps(__m128 a, __m128 b);

Adds adjacent vector elements.
r0 := a0 + a1;
r1 := a2 + a3;
r2 := b0 + b1;
r3 := b2 + b3;

extern __m128 _mm_hsub_ps(__m128 a, __m128 b);

Subtracts adjacent vector elements.
r0 := a0 - a1;
r1 := a2 - a3;
r2 := b0 - b1;
r3 := b2 - b3;

Intel® C++ Compiler for Linux* Systems User's Guide

284

extern __m128 _mm_movehdup_ps(__m128 a);

Duplicates odd vector elements into even vector elements.
r0 := a1;
r1 := a1;
r2 := a3;
r3 := a3;

extern __m128 _mm_moveldup_ps(__m128 a);

Duplicates even vector elements into odd vector elements.
r0 := a0;
r1 := a0;
r2 := a2;
r3 := a2;

Double-precision Floating-point Vector Intrinsics
extern __m128d _mm_addsub_pd(__m128d a, __m128d b);

Adds upper vector element while subtracting lower vector element.
r0 := a0 - b0;
r1 := a1 + b1;

extern __m128d _mm_hadd_pd(__m128d a, __m128d b);

Adds adjacent vector elements.
r0 := a0 + a1;
r1 := b0 + b1;

extern __m128d _mm_hsub_pd(__m128d a, __m128d b);

Subtracts adjacent vector elements.
r0 := a0 - a1;
r1 := b0 - b1;

extern __m128d _mm_loaddup_pd(double const * dp);

Duplicates a double value into upper and lower vector elements.
r0 := *dp;
r1 := *dp;

extern __m128d _mm_movedup_pd(__m128d a);

Duplicates lower vector element into upper vector element.
r0 := a0;
r1 := a0;

Integer Vector Intrinsics
The integer vector intrinsic listed below is designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

extern __m128i _mm_lddqu_si128(__m128i const *p);

Loads an unaligned 128-bit value. This differs from movdqu in that it can
provide higher performance in some cases. However, it also may provide lower
performance than movdqu if the memory value being read was just previously
written.
r := *p;

Intel® C++ Intrinsics Reference

285

Miscellaneous Intrinsics
The miscellaneous intrinsics listed below are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

extern void _mm_monitor(void const *p, unsigned extensions,
unsigned hints);

Generates the MONITOR instruction. This sets up an address range for the
monitor hardware using p to provide the logical address, and will be passed to
the monitor instruction in register eax. The extensions parameter contains
optional extensions to the monitor hardware which will be passed in ecx. The
hints parameter will contain hints to the monitor hardware, which will be passed
in edx. A non-zero value for extensions will cause a general protection fault.

extern void _mm_mwait(unsigned extensions, unsigned hints);

Generates the MWAIT instruction. This instruction is a hint that allows the
processor to stop execution and enter an implementation-dependent optimized
state until occurrence of a class of events. In future processor designs extensions
and hints parameters may be used to convey additional information to the
processor. All non-zero values of extensions and hints are reserved. A non-zero
value for extensions will cause a general protection fault.

Intrinsics for Itanium® Instructions
This section lists and describes the native intrinsics for Itanium® instructions. These intrinsics
cannot be used on the IA-32 architecture. The intrinsics for Itanium instructions give programmers
access to Itanium instructions that cannot be generated using the standard constructs of the C and
C++ languages.

The prototypes for these intrinsics are in the ia64intrin.h header file.

Native Intrinsics for Itanium® Instructions
The prototypes for these intrinsics are in the ia64intrin.h header file.

Integer Operations

Intrinsic Corresponding Instruction

__int64 _m64_dep_mr(__int64 r,
__int64 s, const int pos, const
int len)

dep (Deposit)

__int64 _m64_dep_mi(const int v,
__int64 s, const int p, const int
len)

dep (Deposit)

__int64 _m64_dep_zr(__int64 s,
const int pos, const int len)

dep.z (Deposit)

__int64 _m64_dep_zi(const int v,
const int pos, const int len)

dep.z (Deposit)

int64 m64 extr(int64 r, const
int pos, const int len)

extr (Extract)

Intel® C++ Compiler for Linux* Systems User's Guide

286

Intrinsic Corresponding Instruction

__int64 _m64_extru(__int64 r,
const int pos, const int len)

extr.u (Extract)

__int64 _m64_xmal(__int64 a,
__int64 b, __int64 c)

xma.l (Fixed-point multiply add using
the low 64 bits of the 128-bit result. The
result is signed.)

__int64 _m64_xmalu(__int64 a,
__int64 b, __int64 c)

xma.lu (Fixed-point multiply add using
the low 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _m64_xmah(__int64 a,
__int64 b, __int64 c)

xma.h (Fixed-point multiply add using
the high 64 bits of the 128-bit result. The
result is signed.)

__int64 _m64_xmahu(__int64 a,
__int64 b, __int64 c)

xma.hu (Fixed-point multiply add using
the high 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _m64_popcnt(__int64 a) popcnt (Population count)

__int64 _m64_shladd(__int64 a,
const int count, __int64 b)

shladd (Shift left and add)

__int64 _m64_shrp(__int64 a,
__int64 b, const int count)

shrp (Shift right pair)

FSR Operations

Intrinsic Description

void _fsetc(int
amask, int omask)

Sets the control bits of FPSR.sf0. Maps to the fsetc.sf0
r, r instruction. There is no corresponding instruction to read
the control bits. Use _mm_getfpsr().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR.sf0). Maps to the fclrf.sf0 instruction.

__int64 _m64_dep_mr(__int64 r, __int64 s, const int pos, const int
len)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary
bit position and the result is returned. The deposited bit field begins at bit
position pos and extends to the left (toward the most significant bit) the number
of bits specified by len.

Intel® C++ Intrinsics Reference

287

__int64 _m64_dep_mi(const int v, __int64 s, const int p, const int
len)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s
at an arbitrary bit position and the result is returned. The deposited bit field
begins at bit position p and extends to the left (toward the most significant bit)
the number of bits specified by len.

__int64 _m64_dep_zr(__int64 s, const int pos, const int len)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at
bit position pos and extends to the left (toward the most significant bit) the
number of bits specified by len.

__int64 _m64_dep_zi(const int v, const int pos, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field
of all zeros at an arbitrary bit position and the result is returned. The deposited
bit field begins at bit position pos and extends to the left (toward the most
significant bit) the number of bits specified by len.

__int64 _m64_extr(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and
sign extended. The extracted field begins at position pos and extends len bits
to the left. The sign is taken from the most significant bit of the extracted field.

__int64 _m64_extru(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and
zero extended. The extracted field begins at position pos and extends len bits
to the left.

__int64 _m64_xmal(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to
produce a full 128-bit signed result. The 64-bit value c is zero-extended and
added to the product. The least significant 64 bits of the sum are then returned.

__int64 _m64_xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to
produce a full 128-bit unsigned result. The 64-bit value c is zero-extended and
added to the product. The least significant 64 bits of the sum are then returned.

__int64 _m64_xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to
produce a full 128-bit signed result. The 64-bit value c is zero-extended and
added to the product. The most significant 64 bits of the sum are then returned.

__int64 _m64_xmahu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to
produce a full 128-bit unsigned result. The 64-bit value c is zero-extended and
added to the product. The most significant 64 bits of the sum are then returned.

__int64 _m64_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and
the resulting sum is returned.

__int64 _m64_shladd(__int64 a, const int count, __int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

Intel® C++ Compiler for Linux* Systems User's Guide

288

__int64 _m64_shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count
bits. The least significant 64 bits of the result are returned.

Lock and Atomic Operation Related Intrinsics
The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64
_InterlockedExchange8(volatile unsigned
char *Target, unsigned __int64 value)

Map to the xchg1 instruction.
Atomically write the least
significant byte of its 2nd
argument to address specified
by its 1st argument.

unsigned __int64
_InterlockedCompareExchange8_rel(volatile
unsigned char *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Compare and exchange
atomically the least significant
byte at the address specified by
its 1st argument. Maps to the
cmpxchg1.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange8_acq(volatile
unsigned char *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as above, but using
acquire semantic.

unsigned __int64
_InterlockedExchange16(volatile unsigned
short *Target, unsigned __int64 value)

Map to the xchg2 instruction.
Atomically write the least
significant word of its 2nd
argument to address specified
by its 1st argument.

unsigned __int64
InterlockedCompareExchange16 rel(volatile

unsigned short *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Compare and exchange
atomically the least significant
word at the address specified
by its 1st argument. Maps to
the cmpxchg2.rel
instruction with appropriate
setup.

unsigned __int64
InterlockedCompareExchange16 acq(volatile

unsigned short *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as above, but using
acquire semantic.

int _InterlockedIncrement(volatile int
*addend

Atomically increment by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

Intel® C++ Intrinsics Reference

289

Intrinsic Description

int _InterlockedDecrement(volatile int
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedExchange(volatile int
*Target, long value

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

int _InterlockedCompareExchange(volatile
int *Destination, int Exchange, int
Comparand

Do a compare and exchange
operation atomically. Maps to
the cmpxchg4 instruction
with appropriate setup.

int _InterlockedExchangeAdd(volatile int
*addend, int increment

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cmpxchg4 instruction to
guarantee atomicity.

int _InterlockedAdd(volatile int *addend,
int increment)

Same as above; but returns
new value, not the original
one.

void *
_InterlockedCompareExchangePointer(void *
volatile *Destination, void *Exchange,
void *Comparand)

Map the exch8 instruction;
Atomically compare and
exchange the pointer value
specified by its first argument
(all arguments are pointers)

unsigned __int64
_InterlockedExchangeU(volatile unsigned
int *Target, unsigned __int64 value)

Atomically exchange the 32-
bit quantity specified by the 1st
argument. Maps to the xchg4
instruction.

unsigned __int64
_InterlockedCompareExchange_rel(volatile
unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg4.rel
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

unsigned __int64
_InterlockedCompareExchange_acq(volatile
unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as above; but map the
cmpxchg4.acq instruction.

void _ReleaseSpinLock(volatile int *x) Release spin lock.

Intel® C++ Compiler for Linux* Systems User's Guide

290

Intrinsic Description

__int64 _InterlockedIncrement64(volatile
__int64 *addend)

Increment by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedDecrement64(volatile
__int64 *addend)

Decrement by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedExchange64(volatile
__int64 *Target, __int64 value)

Do an exchange operation
atomically. Maps to the xchg
instruction.

unsigned __int64
_InterlockedExchangeU64(volatile unsigned
__int64 *Target, unsigned __int64 value)

Same as
InterlockedExchange64
(for unsigned quantities).

unsigned __int64
InterlockedCompareExchange64 rel(volatile

unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg.rel
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

unsigned __int64
InterlockedCompareExchange64 acq(volatile

unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg.acq
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

__int64
_InterlockedCompareExchange64(volatile
__int64 *Destination, __int64 Exchange,
__int64 Comparand)

Same as above for signed
quantities.

int64 InterlockedExchangeAdd64(volatile
__int64 *addend, __int64 increment)

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cmpxchg instruction to
guarantee atomicity

int64 InterlockedAdd64(volatile int64
*addend, __int64 increment);

Same as above. Returns the
new value, not the original
value. See Note below.

Intel® C++ Intrinsics Reference

291

Note

_InterlockedSub64 is provided as a macro definition based on _InterlockedAdd64.

#define _InterlockedSub64(target, incr)
_InterlockedAdd64((target),(-(incr))).

Uses cmpxchg to do an atomic sub of the incr value to the target. Maps to a loop with the
cmpxchg instruction to guarantee atomicity.

Load and Store
You can use the load and store intrinsic to force the strict memory access ordering of specific data
objects. This intended use is for the case when the user suppresses the strict memory access
ordering by using the -serialize-volatile- option.

Intrinsic Prototype Description

__st1_rel void __st1_rel(void *dst, const
char value);

Generates an st1.rel
instruction.

__st2_rel void __st2_rel(void *dst, const
short value);

Generates an st2.rel
instruction.

__st4_rel void __st4_rel(void *dst, const
int value);

Generates an st4.rel
instruction.

__st8_rel void __st8_rel(void *dst, const
__int64 value);

Generates an st8.rel
instruction.

__ld1_acq unsigned char __ld1_acq(void
*src);

Generates an ld1.acq
instruction.

__ld2_acq unsigned short __ld2_acq(void
*src);

Generates an ld2.acq
instruction.

__ld4_acq unsigned int __ld4_acq(void *src); Generates an ld4.acq
instruction.

__ld8_acq unsigned __int64 __ld8_acq(void
*src);

Generates an ld8.acq
instruction.

Intel® C++ Compiler for Linux* Systems User's Guide

292

Operating System Related Intrinsics
The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64
__getReg(const int
whichReg)

Gets the value from a hardware register based on
the index passed in. Produces a corresponding mov
= r instruction. Provides access to the following
registers:
See Register Names for getReg() and setReg().

void __setReg(const int
whichReg, unsigned __int64
value)

Sets the value for a hardware register based on the
index passed in. Produces a corresponding mov =
r instruction.
See Register Names for getReg() and setReg().

unsigned __int64
__getIndReg(const int
whichIndReg, __int64 index)

Return the value of an indexed register. The index
is the 2nd argument; the register file is the first
argument.

void __setIndReg(const int
whichIndReg, __int64 index,
unsigned __int64 value)

Copy a value in an indexed register. The index is
the 2nd argument; the register file is the first
argument.

void *__ptr64 _rdteb(void) Gets TEB address. The TEB address is kept in r13
and maps to the move r=tp instruction

void __isrlz(void) Executes the serialize instruction. Maps to the
srlz.i instruction.

void __dsrlz(void) Serializes the data. Maps to the srlz.d
instruction.

unsigned __int64
__fetchadd4_acq(unsigned
int *addend, const int
increment)

Map the fetchadd4.acq instruction.

unsigned __int64
__fetchadd4_rel(unsigned
int *addend, const int
increment)

Map the fetchadd4.rel instruction.

unsigned __int64
__fetchadd8_acq(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.acq instruction.

unsigned __int64
__fetchadd8_rel(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.rel instruction.

Intel® C++ Intrinsics Reference

293

Intrinsic Description

void __fwb(void) Flushes the write buffers. Maps to the fwb
instruction.

void __ldfs(const int
whichFloatReg, void *src)

Map the ldfs instruction. Load a single precision
value to the specified register.

void __ldfd(const int
whichFloatReg, void *src)

Map the ldfd instruction. Load a double precision
value to the specified register.

void __ldfe(const int
whichFloatReg, void *src)

Map the ldfe instruction. Load an extended
precision value to the specified register.

void __ldf8(const int
whichFloatReg, void *src)

Map the ldf8 instruction.

void __ldf_fill(const int
whichFloatReg, void *src)

Map the ldf.fill instruction.

void __stfs(void *dst,
const int whichFloatReg)

Map the sfts instruction.

void __stfd(void *dst,
const int whichFloatReg)

Map the stfd instruction.

void __stfe(void *dst,
const int whichFloatReg)

Map the stfe instruction.

void __stf8(void *dst,
const int whichFloatReg)

Map the stf8 instruction.

void __stf_spill(void *dst,
const int whichFloatReg)

Map the stf.spill instruction.

void __mf(void) Executes a memory fence instruction. Maps to the
mf instruction.

void __mfa(void) Executes a memory fence, acceptance form
instruction. Maps to the mf.a instruction.

void __synci(void) Enables memory synchronization. Maps to the
sync.i instruction.

void __thash(__int64) Generates a translation hash entry address. Maps to
the thash r = r instruction.

void __ttag(__int64) Generates a translation hash entry tag. Maps to the
ttag r=r instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache (Map
itc.d instruction).

Intel® C++ Compiler for Linux* Systems User's Guide

294

Intrinsic Description

void __itci(__int64 pa) Insert an entry into the instruction translation cache
(Map itc.i).

void __itrd(__int64
whichTransReg, __int64 pa)

Map the itr.d instruction.

void __itri(__int64
whichTransReg, __int64 pa)

Map the itr.i instruction.

void __ptce(__int64 va) Map the ptc.e instruction.

void __ptcl(__int64 va,
__int64 pagesz)

Purges the local translation cache. Maps to the
ptc.l r, r instruction.

void __ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Maps to the
ptc.g r, r instruction.

void __ptcga(__int64 va,
__int64 pagesz)

Purges the global translation cache and ALAT.
Maps to the ptc.ga r, r instruction.

void __ptri(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the ptr.i
r, r instruction.

void __ptrd(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the ptr.d
r, r instruction.

__int64 __tpa(__int64 va) Map the tpa instruction.

void __invalat(void) Invalidates ALAT. Maps to the invala
instruction.

void __invala (void) Same as void __invalat(void)

void __invala_gr(const int
whichGeneralReg)

whichGeneralReg = 0-127

void __invala_fr(const int
whichFloatReg)

whichFloatReg = 0-127

void __break(const int) Generates a break instruction with an immediate.

void __nop(const int) Generate a nop instruction.

void __debugbreak(void) Generates a Debug Break Instruction fault.

void __fc(__int64) Flushes a cache line associated with the address
given by the argument. Maps to the fc instruction.

Intel® C++ Intrinsics Reference

295

Intrinsic Description

void __sum(int mask) Sets the user mask bits of PSR. Maps to the sum
imm24 instruction.

void __rum(int mask) Resets the user mask.

__int64
_ReturnAddress(void)

Get the caller's address.

void __lfetch(int lfhint,
void *y)

Generate the lfetch.lfhint instruction. The
value of the first argument specifies the hint type.

void __lfetch_fault(int
lfhint, void *y)

Generate the lfetch.fault.lfhint
instruction. The value of the first argument
specifies the hint type.

void
__lfetch_excl(int
lfhint, void *y)

Generate the lfetch.excl.lfhint
instruction. The value {0|1|2|3} of the first
argument specifies the hint type.

void
__lfetch_fault_excl(i
nt lfhint, void *y)

Generate the lfetch.fault.excl.lfhint
instruction. The value of the first argument
specifies the hint type.

unsigned int
__cacheSize(unsigned int
cacheLevel)

__cacheSize(n) returns the size in bytes of the
cache at level n. 1 represents the first-level cache. 0
is returned for a non-existent cache level. For
example, an application may query the cache size
and use it to select block sizes in algorithms that
operate on matrices.

void __memory_barrier(void) Creates a barrier across which the compiler will not
schedule any data access instruction. The compiler
may allocate local data in registers across a
memory barrier, but not global data.

void __ssm(int mask) Sets the system mask. Maps to the ssm imm24
instruction.

void __rsm(int mask) Resets the system mask bits of PSR. Maps to the
rsm imm24 instruction.

Intel® C++ Compiler for Linux* Systems User's Guide

296

Conversion Intrinsics
The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

__int64 _m_to_int64(__m64 a) Convert a of type __m64 to type
__int64. Translates to nop since both
types reside in the same register on Itanium-
based systems.

__m64 _m_from_int64(__int64 a) Convert a of type __int64 to type
__m64. Translates to nop since both types
reside in the same register on Itanium-based
systems.

__int64
__round_double_to_int64(double
d)

Convert its double precision argument to a
signed integer.

unsigned __int64
__getf_exp(double d)

Map the getf.exp instruction and return
the 16-bit exponent and the sign of its
operand.

Register Names for getReg() and setReg()
The prototypes for getReg() and setReg() intrinsics are in the ia64regs.h header file.

Name whichReg

_IA64_REG_IP 1016

_IA64_REG_PSR 1019

_IA64_REG_PSR_L 1019

General Integer Registers

Name whichReg

_IA64_REG_GP 1025

_IA64_REG_SP 1036

_IA64_REG_TP 1037

Intel® C++ Intrinsics Reference

297

Application Registers

Name whichReg

_IA64_REG_AR_KR0 3072

_IA64_REG_AR_KR1 3073

_IA64_REG_AR_KR2 3074

_IA64_REG_AR_KR3 3075

_IA64_REG_AR_KR4 3076

_IA64_REG_AR_KR5 3077

_IA64_REG_AR_KR6 3078

_IA64_REG_AR_KR7 3079

_IA64_REG_AR_RSC 3088

_IA64_REG_AR_BSP 3089

_IA64_REG_AR_BSPSTORE 3090

_IA64_REG_AR_RNAT 3091

_IA64_REG_AR_FCR 3093

_IA64_REG_AR_EFLAG 3096

_IA64_REG_AR_CSD 3097

_IA64_REG_AR_SSD 3098

_IA64_REG_AR_CFLAG 3099

_IA64_REG_AR_FSR 3100

_IA64_REG_AR_FIR 3101

_IA64_REG_AR_FDR 3102

_IA64_REG_AR_CCV 3104

_IA64_REG_AR_UNAT 3108

_IA64_REG_AR_FPSR 3112

Intel® C++ Compiler for Linux* Systems User's Guide

298

Name whichReg

_IA64_REG_AR_ITC 3116

_IA64_REG_AR_PFS 3136

_IA64_REG_AR_LC 3137

_IA64_REG_AR_EC 3138

Control Registers

Name whichReg

_IA64_REG_CR_DCR 4096

_IA64_REG_CR_ITM 4097

_IA64_REG_CR_IVA 4098

_IA64_REG_CR_PTA 4104

_IA64_REG_CR_IPSR 4112

_IA64_REG_CR_ISR 4113

_IA64_REG_CR_IIP 4115

_IA64_REG_CR_IFA 4116

_IA64_REG_CR_ITIR 4117

_IA64_REG_CR_IIPA 4118

_IA64_REG_CR_IFS 4119

_IA64_REG_CR_IIM 4120

_IA64_REG_CR_IHA 4121

_IA64_REG_CR_LID 4160

_IA64_REG_CR_IVR 4161 *

_IA64_REG_CR_TPR 4162

_IA64_REG_CR_EOI 4163

Intel® C++ Intrinsics Reference

299

Name whichReg

_IA64_REG_CR_IRR0 4164 *

_IA64_REG_CR_IRR1 4165 *

_IA64_REG_CR_IRR2 4166 *

_IA64_REG_CR_IRR3 4167 *

_IA64_REG_CR_ITV 4168

_IA64_REG_CR_PMV 4169

_IA64_REG_CR_CMCV 4170

_IA64_REG_CR_LRR0 4176

_IA64_REG_CR_LRR1 4177

* getReg only

Indirect Registers for getIndReg() and setIndReg()

Name whichReg

_IA64_REG_INDR_CPUID 9000 *

_IA64_REG_INDR_DBR 9001

_IA64_REG_INDR_IBR 9002

_IA64_REG_INDR_PKR 9003

_IA64_REG_INDR_PMC 9004

_IA64_REG_INDR_PMD 9005

_IA64_REG_INDR_RR 9006

_IA64_REG_INDR_RESERVED 9007

* getIndReg only

Intel® C++ Compiler for Linux* Systems User's Guide

300

Multimedia Additions
The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Corresponding Instruction

__int64 _m64_czx1l(__m64 a) czx1.l (Compute Zero Index)

__int64 _m64_czx1r(__m64 a) czx1.r (Compute Zero Index)

__int64 _m64_czx2l(__m64 a) czx2.l (Compute Zero Index)

__int64 _m64_czx2r(__m64 a) czx2.r (Compute Zero Index)

__m64 _m64_mix1l(__m64 a, __m64 b) mix1.l (Mix)

__m64 _m64_mix1r(__m64 a, __m64 b) mix1.r (Mix)

__m64 _m64_mix2l(__m64 a, __m64 b) mix2.l (Mix)

__m64 _m64_mix2r(__m64 a, __m64 b) mix2.r (Mix)

__m64 _m64_mix4l(__m64 a, __m64 b) mix4.l (Mix)

__m64 _m64_mix4r(__m64 a, __m64 b) mix4.r (Mix)

__m64 _m64_mux1(__m64 a, const int n) mux1 (Mux)

__m64 _m64_mux2(__m64 a, const int n) mux2 (Mux)

__m64 _m64_padd1uus(__m64 a, __m64 b) padd1.uus (Parallel add)

__m64 _m64_padd2uus(__m64 a, __m64 b) padd2.uus (Parallel add)

__m64 _m64_pavg1_nraz(__m64 a, __m64 b) pavg1 (Parallel average)

__m64 _m64_pavg2_nraz(__m64 a, __m64 b) pavg2 (Parallel average)

__m64 _m64_pavgsub1(__m64 a, __m64 b) pavgsub1 (Parallel average
subtract)

__m64 _m64_pavgsub2(__m64 a, __m64 b) pavgsub2 (Parallel average
subtract)

__m64 _m64_pmpy2r(__m64 a, __m64 b) pmpy2.r (Parallel multiply)

__m64 _m64_pmpy2l(__m64 a, __m64 b) pmpy2.l (Parallel multiply)

__m64 _m64_pmpyshr2(__m64 a, __m64 b,
const int count)

pmpyshr2 (Parallel multiply and
shift right)

Intel® C++ Intrinsics Reference

301

Intrinsic Corresponding Instruction

__m64 _m64_pmpyshr2u(__m64 a, __m64 b,
const int count)

pmpyshr2.u (Parallel multiply
and shift right)

__m64 _m64_pshladd2(__m64 a, const int
count, __m64 b)

pshladd2 (Parallel shift left
and add)

__m64 _m64_pshradd2(__m64 a, const int
count, __m64 b)

pshradd2 (Parallel shift right
and add)

__m64 _m64_psub1uus(__m64 a, __m64 b) psub1.uus (Parallel subtract)

__m64 _m64_psub2uus(__m64 a, __m64 b) psub2.uus (Parallel subtract)

__int64 _m64_czx1l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant
element to the least significant element, and the index of the first zero element is
returned. The element width is 8 bits, so the range of the result is from 0 - 7. If
no zero element is found, the default result is 8.

__int64 _m64_czx1r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant
element to the most significant element, and the index of the first zero element is
returned. The element width is 8 bits, so the range of the result is from 0 - 7. If
no zero element is found, the default result is 8.

__int64 _m64_czx2l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant
element to the least significant element, and the index of the first zero element is
returned. The element width is 16 bits, so the range of the result is from 0 - 3. If
no zero element is found, the default result is 4.

__int64 _m64_czx2r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant
element to the most significant element, and the index of the first zero element is
returned. The element width is 16 bits, so the range of the result is from 0 - 3. If
no zero element is found, the default result is 4.

__m64 _m64_mix1l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as
shown in Figure 1, and return the result.

Intel® C++ Compiler for Linux* Systems User's Guide

302

__m64 _m64_mix1r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as
shown in Figure 2, and return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as
shown in Figure 3, and return the result.

__m64 _m64_mix2r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as
shown in Figure 4, and return the result.

__m64 _m64_mix4l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as
shown in Figure 5, and return the result.

__m64 _m64_mix4r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as
shown in Figure 6, and return the result.

Intel® C++ Intrinsics Reference

303

__m64 _m64_mux1(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7,
and the result is returned. Table 1 shows the possible values of n.

Table 1. Values of n for m64_mux1 Operation

 n

@brcst 0

@mix 8

@shuf 9

@alt 0xA

@rev 0xB

Intel® C++ Compiler for Linux* Systems User's Guide

304

__m64 _m64_mux2(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8,
and the result is returned.

__m64 _m64_pavgsub1(__m64 a, __m64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data
elements (bytes) of a and the results of the subtraction are then each
independently shifted to the right by one position. The high-order bits of each
element are filled with the borrow bits of the subtraction.

__m64 _m64_pavgsub2(__m64 a, __m64 b)

The unsigned data elements (double bytes) of b are subtracted from the
unsigned data elements (double bytes) of a and the results of the subtraction are
then each independently shifted to the right by one position. The high-order bits
of each element are filled with the borrow bits of the subtraction.

__m64 _m64_pmpy2l(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the most significant data
element, are multiplied by the corresponding two signed 16-bit data elements of
b, and the two 32-bit results are returned as shown in Figure 9.

Intel® C++ Intrinsics Reference

305

__m64 _m64_pmpy2r(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the least significant data
element, are multiplied by the corresponding two signed 16-bit data elements of
b, and the two 32-bit results are returned as shown in Figure 10.

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding
signed 16-bit data elements of b, yielding four 32-bit products. Each product is
then shifted to the right count bits and the least significant 16 bits of each shifted
product form 4 16-bit results, which are returned as one 64-bit word.

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding
unsigned 16-bit data elements of b, yielding four 32-bit products. Each product
is then shifted to the right count bits and the least significant 16 bits of each
shifted product form 4 16-bit results, which are returned as one 64-bit word.

__m64 _m64_pshladd2(__m64 a, const int count, __m64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of
the result are forced to 0, and then bits [31:30] of b are copied to bits [62:61] of
the result. The result is returned.

__m64 _m64_pshradd2(__m64 a, const int count, __m64 b)

The four signed 16-bit data elements of a are each independently shifted to the
right by count bits (the high order bits of each element are filled with the
initial value of the sign bits of the data elements in a); they are then added to the
four signed 16-bit data elements of b. The result is returned.

__m64 _m64_padd1uus(__m64 a, __m64 b)

a is added to b as eight separate byte-wide elements. The elements of a are
treated as unsigned, while the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

__m64 _m64_padd2uus(__m64 a, __m64 b)

a is added to b as four separate 16-bit wide elements. The elements of a are
treated as unsigned, while the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

__m64 _m64_psub1uus(__m64 a, __m64 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a
are treated as unsigned, while the elements of b are treated as signed. The results
are treated as unsigned and are returned as one 64-bit word.

Intel® C++ Compiler for Linux* Systems User's Guide

306

__m64 _m64_psub2uus(__m64 a, __m64 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a
are treated as unsigned, while the elements of b are treated as signed. The results
are treated as unsigned and are returned as one 64-bit word.

__m64 _m64_pavg1_nraz(__m64 a, __m64 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide
data elements of b and the results of each add are then independently shifted to
the right by one position. The high-order bits of each element are filled with the
carry bits of the sums.

__m64 _m64_pavg2_nraz(__m64 a, __m64 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit
wide data elements of b and the results of each add are then independently
shifted to the right by one position. The high-order bits of each element are
filled with the carry bits of the sums.

Synchronization Primitives
The synchronization primitive intrinsics provide a variety of operations. Besides performing these
operations, each intrinsic has two key properties:

• the function performed is guaranteed to be atomic

• associated with each intrinsic are certain memory barrier properties that restrict the
movement of memory references to visible data across the intrinsic operation by either the
compiler or the processor

For the intrinsics listed below, <type> is either a 32-bit or 64-bit integer.

Atomic Fetch-and-op Operations
<type> __sync_fetch_and_add(<type> *ptr,<type> val)
<type> __sync_fetch_and_and(<type> *ptr,<type> val)
<type> __sync_fetch_and_nand(<type> *ptr,<type> val)
<type> __sync_fetch_and_or(<type> *ptr,<type> val)
<type> __sync_fetch_and_sub(<type> *ptr,<type> val)
<type> __sync_fetch_and_xor(<type> *ptr,<type> val)

Atomic Op-and-fetch Operations
<type> __sync_add_and_fetch(<type> *ptr,<type> val)
<type> __sync_sub_and_fetch(<type> *ptr,<type> val)
<type> __sync_or_and_fetch(<type> *ptr,<type> val)
<type> __sync_and_and_fetch(<type> *ptr,<type> val)
<type> __sync_nand_and_fetch(<type> *ptr,<type> val)
<type> __sync_xor_and_fetch(<type> *ptr,<type> val)

Atomic Compare-and-swap Operations
<type> __sync_val_compare_and_swap(<type> *ptr, <type> old_val,
<type> new_val)
int __sync_bool_compare_and_swap(<type> *ptr, <type> old_val,
<type> new_val)

Atomic Synchronize Operation
void __sync_synchronize (void);

Atomic Lock-test-and-set Operation
<type> __sync_lock_test_and_set(<type> *ptr,<type> val)

Atomic Lock-release Operation
void __sync_lock_release(<type> *ptr)

Intel® C++ Intrinsics Reference

307

Miscellaneous Intrinsics
void* __get_return_address(unsigned int level);

This intrinsic yields the return address of the current function. The level
argument must be a constant value. A value of 0 yields the return address of the
current function. Any other value yields a zero return address. On Linux
systems, this intrinsic is synonymous with __builtin_return_address.
The name and the argument are provided for compatibility with gcc*.

void __set_return_address(void* addr);

This intrinsic overwrites the default return address of the current function with
the address indicated by its argument. On return from the current invocation,
program execution continues at the address provided.

void* __get_frame_address(unsigned int level);

This intrinsic returns the frame address of the current function. The level
argument must be a constant value. A value of 0 yields the frame address of the
current function. Any other value yields a zero return value. On Linux systems,
this intrinsic is synonymous with __builtin_frame_address. The name
and the argument are provided for compatibility with gcc.

Data Alignment, Memory Allocation Intrinsics, and
Inline Assembly

This section describes features that support usage of the intrinsics. The following topics are
described:

• Alignment Support

• Allocating and Freeing Aligned Memory Blocks

• Inline Assembly

Alignment Support
To improve intrinsics performance, you need to align data. For example, when you are using the
Streaming SIMD Extensions, you should align data to 16 bytes in memory operations to improve
performance. Specifically, you must align __m128 objects as addresses passed to the _mm_load
and _mm_store intrinsics. If you want to declare arrays of floats and treat them as __m128
objects by casting, you need to ensure that the float arrays are properly aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it otherwise
does on both IA-32 and Itanium®-based systems. For example, a data object of type int is
allocated at a byte address which is a multiple of 4 by default (the size of an int). However, by
using __declspec(align), you can direct the compiler to instead use an address which is a
multiple of 8, 16, or 32 with the following restrictions on IA-32:

• 32-byte addresses must be statically allocated

• 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By
clustering small objects that are commonly used together into a struct, and forcing the struct
to be allocated at the beginning of a cache line, you can effectively guarantee that each object is
loaded into the cache as soon as any one is accessed, resulting in a significant performance benefit.

Intel® C++ Compiler for Linux* Systems User's Guide

308

The syntax of this extended-attribute is as follows:

align(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested
alignment.

 Caution

In this release, __declspec(align(8)) does not function correctly. Use
__declspec(align(16)) instead.

 Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In
other words, data is aligned to the maximum of its own alignment or the alignment specified with
__declspec(align).

You can request alignments for individual variables, whether of static or automatic storage
duration. (Global and static variables have static storage duration; local variables have automatic
storage duration by default.) You cannot adjust the alignment of a parameter, nor a field of a
struct or class. You can, however, increase the alignment of a struct (or union or
class), in which case every object of that type is affected.

As an example, suppose that a function uses local variables i and j as subscripts into a 2-
dimensional array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache lines, which
could be detrimental to performance. You can instead declare them as follows:

__declspec(align(8)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the
struct variable name (written as sub in the above example). In C, however, it is required, and
you must write references to i and j as sub.i and sub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a
struct type for them, as in the following example:

typedef struct __declspec(align(8)) { int i, j; } Sub;

By placing the __declspec(align) after the keyword struct, you are requesting the
appropriate alignment for all objects of that type. However, that allocation of parameters is
unaffected by __declspec(align). (If necessary, you can assign the value of a parameter to a
local variable with the appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks
Use the _mm_malloc and _mm_free intrinsics to allocate and free aligned blocks of memory.
These intrinsics are based on malloc and free, which are in the libirc.a library. You need
to include malloc.h. The syntax for these intrinsics is as follows:

void* _mm_malloc (int size, int align)
void _mm_free (void *p)

The _mm_malloc routine takes an extra parameter, which is the alignment constraint. This
constraint must be a power of two. The pointer that is returned from _mm_malloc is guaranteed
to be aligned on the specified boundary.

Intel® C++ Intrinsics Reference

309

 Note

Memory that is allocated using _mm_malloc must be freed using _mm_free . Calling free
on memory allocated with _mm_malloc or calling _mm_free on memory allocated with
malloc will cause unpredictable behavior.

Inline Assembly
By default, the compiler inlines a number of standard C, C++, and math library functions. This
usually results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library
functions do not set the errno variable. So, in code that relies upon the setting of the errno
variable, you should use the -nolib_inline option, which turns off inline expansion of library
functions. Also, if one of your functions has the same name as one of the compiler's supplied
library functions, the compiler assumes that it is one of the latter and replaces the call with the
inlined version. Consequently, if the program defines a function with the same name as one of the
known library routines, you must use the -nolib_inline option to ensure that the program's
function is the one used.

 Note

Automatic inline expansion of library functions is not related to the inline expansion that the
compiler does during interprocedural optimizations. For example, the following command
compiles the program sum.c without expanding the library functions, but with inline expansion
from interprocedural optimizations (IPO):

prompt>icpc -ip -nolib_inline sum.cpp

For details on IPO, see Interprocedural Optimizations.

MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the -use_msasm option.
See your MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 only)

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]
) ;

Syntax Element Description

asm-keyword asm statements begin with the keyword asm. Alternatively, either
__asm or __asm__ may be used for compatibility.

volatile-keyword If the optional keyword volatile is given, the asm is volatile.
 Two volatile asm statements will never be moved past each
other, and a reference to a volatile variable will not be moved
relative to a volatile asm. Alternate keywords __volatile and
__volatile__ may be used for compatibility.

Intel® C++ Compiler for Linux* Systems User's Guide

310

Syntax Element Description

asm-template The asm-template is a C language ASCII string which specifies
how to output the assembly code for an instruction. Most of the
template is a fixed string; everything but the substitution-directives,
if any, is passed through to the assembler. The syntax for a
substitution directive is a % followed by one or two characters. The
supported substitution directives are specified in a subsequent
section.

asm-interface The asm-interface consists of three parts:
1. an optional output-list
2. an optional input-list
3. an optional clobber-list
These are separated by colon (:) characters. If the output-list
is missing, but an input-list is given, the input list may be
preceded by two colons (::)to take the place of the missing
output-list. If the asm-interface is omitted altogether,
the asm statement is considered volatile regardless of whether a
volatile-keyword was specified.

output-list An output-list consists of one or more output-specs
separated by commas. For the purposes of substitution in the asm-
template, each output-spec is numbered. The first operand
in the output-list is numbered 0, the second is 1, and so on.
 Numbering is continuous through the output-list and into the
input-list. The total number of operands is limited to 10 (i.e.
0-9).

input-list Similar to an output-list, an input-list consists of one or
more input-specs separated by commas. For the purposes of
substitution in the asm-template, each input-spec is
numbered, with the numbers continuing from those in the output-
list.

clobber-list A clobber-list tells the compiler that the asm uses or changes
a specific machine register that is either coded directly into the asm
or is changed implicitly by the assembly instruction. The
clobber-list is a comma-separated list of clobber-specs.

input-spec The input-specs tell the compiler about expressions whose
values may be needed by the inserted assembly instruction. In order
to describe fully the input requirements of the asm, you can list
input-specs that are not actually referenced in the asm-
template.

Intel® C++ Intrinsics Reference

311

Syntax Element Description

clobber-spec Each clobber-spec specifies the name of a single machine
register that is clobbered. The register name may optionally be
preceded by a %. The following are the valid register names: eax,
ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di, bp, sp, al, bl, cl,
dl, ah, bh, ch, dh, st, st(1) - st(7), mm0 - mm7, xmm0 - xmm7, and
cc. It is also legal to specify "memory" in a clobber-spec. This
prevents the compiler from keeping data cached in registers across
the asm statement.

Intrinsics Cross-processor Implementation
This section provides a series of tables that compare intrinsics performance across architectures.
Before implementing intrinsics across architectures, please note the following.

• Instrinsics may generate code that does not run on all IA processors. Therefore the
programmer is responsible for using CPUID to detect the processor and generating the
appropriate code.

• Implement intrinsics by processor family, not by specific processor. The guiding principle
for which family -- IA-32 or Itanium® processors -- the intrinsic is implemented on is
performance, not compatibility. Where there is added performance on both families, the
intrinsic will be identical.

Intrinsics For Implementation Across All IA
The following intrinsics provide significant performance gain over a non-intrinsic-based code
equivalent.

int abs(int)

long labs(long)

unsigned long __lrotl(unsigned long value, int shift)

unsigned long __lrotr(unsigned long value, int shift)

unsigned int __rotl(unsigned int value, int shift)

unsigned int __rotr(unsigned int value, int shift)

__int64 __i64_rotl(__int64 value, int shift)

__int64 __i64_rotr(__int64 value, int shift)

double fabs(double)

double log(double)

float logf(float)

Intel® C++ Compiler for Linux* Systems User's Guide

312

double log10(double)

float log10f(float)

double exp(double)

float expf(float)

double pow(double, double)

float powf(float, float)

double sin(double)

float sinf(float)

double cos(double)

float cosf(float)

double tan(double)

float tanf(float)

double acos(double)

float acosf(float)

double acosh(double)

float acoshf(float)

double asin(double)

float asinf(float)

double asinh(double)

float asinhf(float)

double atan(double)

float atanf(float)

double atanh(double)

float atanhf(float)

float cabs(double)*

Intel® C++ Intrinsics Reference

313

double ceil(double)

float ceilf(float)

double cosh(double)

float coshf(float)

float fabsf(float)

double floor(double)

float floorf(float)

double fmod(double)

float fmodf(float)

double hypot(double, double)

float hypotf(float)

double rint(double)

float rintf(float)

double sinh(double)

float sinhf(float)

float sqrtf(float)

double tanh(double)

float tanhf(float)

char *_strset(char *, _int32)

void *memcmp(const void *cs, const void *ct, size_t n)

void *memcpy(void *s, const void *ct, size_t n)

void *memset(void * s, int c, size_t n)

char *Strcat(char * s, const char * ct)

int *strcmp(const char *, const char *)

char *strcpy(char * s, const char * ct)

Intel® C++ Compiler for Linux* Systems User's Guide

314

size_t strlen(const char * cs)

int strncmp(char *, char *, int)

int strncpy(char *, char *, int)

void *__alloca(int)

int _setjmp(jmp_buf)

_exception_code(void)

_exception_info(void)

_abnormal_termination(void)

void _enable()

void _disable()

int _bswap(int)

int _in_byte(int)

int _in_dword(int)

int _in_word(int)

int _inp(int)

int _inpd(int)

int _inpw(int)

int _out_byte(int, int)

int _out_dword(int, int)

int _out_word(int, int)

int _outp(int, int)

int _outpd(int, int)

int _outpw(int, int)

Intel® C++ Intrinsics Reference

315

MMX™ Technology Intrinsics Implementation
Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

• B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Name Alternate Name Across
All IA

MMX™
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium®
Architecture

_m_empty _mm_empty N/A A B

_m_from_int _mm_cvtsi32_si64 N/A A A

_m_to_int _mm_cvtsi64_si32 N/A A A

_m_packsswb _mm_packs_pi16 N/A A A

_m_packssdw _mm_packs_pi32 N/A A A

_m_packuswb _mm_packs_pu16 N/A A A

_m_punpckhbw _mm_unpackhi_pi8 N/A A A

_m_punpckhwd _mm_unpackhi_pi16 N/A A A

_m_punpckhdq _mm_unpackhi_pi32 N/A A A

_m_punpcklbw _mm_unpacklo_pi8 N/A A A

_m_punpcklwd _mm_unpacklo_pi16 N/A A A

_m_punpckldq _mm_unpacklo_pi32 N/A A A

_m_paddb _mm_add_pi8 N/A A A

_m_paddw _mm_add_pi16 N/A A A

_m_paddd _mm_add_pi32 N/A A A

_m_paddsb _mm_adds_pi8 N/A A A

_m_paddsw _mm_adds_pi16 N/A A A

_m_paddusb _mm_adds_pu8 N/A A A

_m_paddusw _mm_adds_pu16 N/A A A

_m_psubb _mm_sub_pi8 N/A A A

Intel® C++ Compiler for Linux* Systems User's Guide

316

Intrinsic Name Alternate Name Across
All IA

MMX™
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium®
Architecture

_m_psubw _mm_sub_pi16 N/A A A

_m_psubd _mm_sub_pi32 N/A A A

_m_psubsb _mm_subs_pi8 N/A A A

_m_psubsw _mm_subs_pi16 N/A A A

_m_psubusb _mm_subs_pu8 N/A A A

_m_psubusw _mm_subs_pu16 N/A A A

_m_pmaddwd _mm_madd_pi16 N/A A C

_m_pmulhw _mm_mulhi_pi16 N/A A A

_m_pmullw _mm_mullo_pi16 N/A A A

_m_psllw _mm_sll_pi16 N/A A A

_m_psllwi _mm_slli_pi16 N/A A A

_m_pslld _mm_sll_pi32 N/A A A

_m_pslldi _mm_slli_pi32 N/A A A

_m_psllq _mm_sll_si64 N/A A A

_m_psllqi _mm_slli_si64 N/A A A

_m_psraw _mm_sra_pi16 N/A A A

_m_psrawi _mm_srai_pi16 N/A A A

_m_psrad _mm_sra_pi32 N/A A A

_m_psradi _mm_srai_pi32 N/A A A

_m_psrlw _mm_srl_pi16 N/A A A

_m_psrlwi _mm_srli_pi16 N/A A A

_m_psrld _mm_srl_pi32 N/A A A

_m_psrldi _mm_srli_pi32 N/A A A

_m_psrlq _mm_srl_si64 N/A A A

_m_psrlqi _mm_srli_si64 N/A A A

Intel® C++ Intrinsics Reference

317

Intrinsic Name Alternate Name Across
All IA

MMX™
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium®
Architecture

_m_pand _mm_and_si64 N/A A A

_m_pandn _mm_andnot_si64 N/A A A

_m_por _mm_or_si64 N/A A A

_m_pxor _mm_xor_si64 N/A A A

_m_pcmpeqb _mm_cmpeq_pi8 N/A A A

_m_pcmpeqw _mm_cmpeq_pi16 N/A A A

_m_pcmpeqd _mm_cmpeq_pi32 N/A A A

_m_pcmpgtb _mm_cmpgt_pi8 N/A A A

_m_pcmpgtw _mm_cmpgt_pi16 N/A A A

_m_pcmpgtd _mm_cmpgt_pi32 N/A A A

mm setzero si64 N/A A A

_mm_set_pi32 N/A A A

_mm_set_pi16 N/A A C

_mm_set_pi8 N/A A C

_mm_set1_pi32 N/A A A

_mm_set1_pi16 N/A A A

_mm_set1_pi8 N/A A A

_mm_setr_pi32 N/A A A

_mm_setr_pi16 N/A A C

_mm_setr_pi8 N/A A C

_mm_empty is implemented in Itanium instructions as a NOP for source compatibility only.

Intel® C++ Compiler for Linux* Systems User's Guide

318

Streaming SIMD Extensions Intrinsics Implementation
Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On
Itanium®-based systems basic operations like add or compare will require two SIMD instructions.
Both can be executed in the same cycle so the throughput is one basic Streaming SIMD
Extensions operation per cycle or 4 32-bit single precision operations per cycle.

Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

• B = Non-intrinsic-based source code would be better; the intrinsic's implementation may
map directly to native instructions but they offer no significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will result in very
poor performance if used.

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_add_ss N/A N/A B B

_mm_add_ps N/A N/A A A

_mm_sub_ss N/A N/A B B

_mm_sub_ps N/A N/A A A

_mm_mul_ss N/A N/A B B

_mm_mul_ps N/A N/A A A

_mm_div_ss N/A N/A B B

_mm_div_ps N/A N/A A A

_mm_sqrt_ss N/A N/A B B

_mm_sqrt_ps N/A N/A A A

_mm_rcp_ss N/A N/A B B

_mm_rcp_ps N/A N/A A A

_mm_rsqrt_ss N/A N/A B B

_mm_rsqrt_ps N/A N/A A A

_mm_min_ss N/A N/A B B

_mm_min_ps N/A N/A A A

_mm_max_ss N/A N/A B B

_mm_max_ps N/A N/A A A

Intel® C++ Intrinsics Reference

319

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_and_ps N/A N/A A A

_mm_andnot_ps N/A N/A A A

_mm_or_ps N/A N/A A A

_mm_xor_ps N/A N/A A A

_mm_cmpeq_ss N/A N/A B B

_mm_cmpeq_ps N/A N/A A A

_mm_cmplt_ss N/A N/A B B

_mm_cmplt_ps N/A N/A A A

_mm_cmple_ss N/A N/A B B

_mm_cmple_ps N/A N/A A A

_mm_cmpgt_ss N/A N/A B B

_mm_cmpgt_ps N/A N/A A A

_mm_cmpge_ss N/A N/A B B

_mm_cmpge_ps N/A N/A A A

_mm_cmpneq_ss N/A N/A B B

_mm_cmpneq_ps N/A N/A A A

_mm_cmpnlt_ss N/A N/A B B

_mm_cmpnlt_ps N/A N/A A A

_mm_cmpnle_ss N/A N/A B B

_mm_cmpnle_ps N/A N/A A A

_mm_cmpngt_ss N/A N/A B B

_mm_cmpngt_ps N/A N/A A A

_mm_cmpnge_ss N/A N/A B B

_mm_cmpnge_ps N/A N/A A A

_mm_cmpord_ss N/A N/A B B

_mm_cmpord_ps N/A N/A A A

Intel® C++ Compiler for Linux* Systems User's Guide

320

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_cmpunord_ss N/A N/A B B

_mm_cmpunord_ps N/A N/A A A

_mm_comieq_ss N/A N/A B B

_mm_comilt_ss N/A N/A B B

_mm_comile_ss N/A N/A B B

_mm_comigt_ss N/A N/A B B

_mm_comige_ss N/A N/A B B

_mm_comineq_ss N/A N/A B B

_mm_ucomieq_ss N/A N/A B B

_mm_ucomilt_ss N/A N/A B B

_mm_ucomile_ss N/A N/A B B

_mm_ucomigt_ss N/A N/A B B

_mm_ucomige_ss N/A N/A B B

_mm_ucomineq_ss N/A N/A B B

_mm_cvt_ss2si _mm_cvtss_si32 N/A N/A A B

_mm_cvt_ps2pi _mm_cvtps_pi32 N/A N/A A A

_mm_cvtt_ss2si _mm_cvttss_si32 N/A N/A A B

_mm_cvtt_ps2pi _mm_cvttps_pi32 N/A N/A A A

_mm_cvt_si2ss _mm_cvtsi32_ss N/A N/A A B

_mm_cvt_pi2ps _mm_cvtpi32_ps N/A N/A A C

_mm_cvtpi16_ps N/A N/A A C

_mm_cvtpu16_ps N/A N/A A C

_mm_cvtpi8_ps N/A N/A A C

_mm_cvtpu8_ps N/A N/A A C

_mm_cvtpi32x2_ps N/A N/A A C

_mm_cvtps_pi16 N/A N/A A C

Intel® C++ Intrinsics Reference

321

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_cvtps_pi8 N/A N/A A C

_mm_move_ss N/A N/A A A

_mm_shuffle_ps N/A N/A A A

_mm_unpackhi_ps N/A N/A A A

_mm_unpacklo_ps N/A N/A A A

_mm_movehl_ps N/A N/A A A

_mm_movelh_ps N/A N/A A A

_mm_movemask_ps N/A N/A A C

_mm_getcsr N/A N/A A A

_mm_setcsr N/A N/A A A

_mm_loadh_pi N/A N/A A A

_mm_loadl_pi N/A N/A A A

_mm_load_ss N/A N/A A B

_mm_load_ps1 _mm_load1_ps N/A N/A A A

_mm_load_ps N/A N/A A A

_mm_loadu_ps N/A N/A A A

_mm_loadr_ps N/A N/A A A

_mm_storeh_pi N/A N/A A A

_mm_storel_pi N/A N/A A A

_mm_store_ss N/A N/A A A

_mm_store_ps N/A N/A A A

_mm_store_ps1 _mm_store1_ps N/A N/A A A

_mm_storeu_ps N/A N/A A A

_mm_storer_ps N/A N/A A A

_mm_set_ss N/A N/A A A

_mm_set_ps1 _mm_set1_ps N/A N/A A A

Intel® C++ Compiler for Linux* Systems User's Guide

322

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_set_ps N/A N/A A A

_mm_setr_ps N/A N/A A A

_mm_setzero_ps N/A N/A A A

_mm_prefetch N/A N/A A A

_mm_stream_pi N/A N/A A A

_mm_stream_ps N/A N/A A A

_mm_sfence N/A N/A A A

_m_pextrw _mm_extract_pi16 N/A N/A A A

_m_pinsrw _mm_insert_pi16 N/A N/A A A

_m_pmaxsw _mm_max_pi16 N/A N/A A A

_m_pmaxub _mm_max_pu8 N/A N/A A A

_m_pminsw _mm_min_pi16 N/A N/A A A

_m_pminub _mm_min_pu8 N/A N/A A A

_m_pmovmskb _mm_movemask_pi8 N/A N/A A C

_m_pmulhuw _mm_mulhi_pu16 N/A N/A A A

_m_pshufw _mm_shuffle_pi16 N/A N/A A A

_m_maskmovq _mm_maskmove_si64 N/A N/A A C

_m_pavgb _mm_avg_pu8 N/A N/A A A

_m_pavgw _mm_avg_pu16 N/A N/A A A

_m_psadbw _mm_sad_pu8 N/A N/A A A

Intel® C++ Intrinsics Reference

323

Streaming SIMD Extensions 2 Intrinsics Implementation
Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-
point values. The Intel® Itanium® processor does not support parallel double precision
computation, so Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries:

• A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

• B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will result in very
poor performance if used.

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_add_sd N/A N/A N/A A N/A

_mm_add_pd N/A N/A N/A A N/A

_mm_sub_sd N/A N/A N/A A N/A

_mm_sub_pd N/A N/A N/A A N/A

_mm_mul_sd N/A N/A N/A A N/A

_mm_mul_pd N/A N/A N/A A N/A

_mm_sqrt_sd N/A N/A N/A A N/A

_mm_sqrt_pd N/A N/A N/A A N/A

_mm_div_sd N/A N/A N/A A N/A

_mm_div_pd N/A N/A N/A A N/A

_mm_min_sd N/A N/A N/A A N/A

_mm_min_pd N/A N/A N/A A N/A

_mm_max_sd N/A N/A N/A A N/A

_mm_max_pd N/A N/A N/A A N/A

_mm_and_pd N/A N/A N/A A N/A

_mm_andnot_pd N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

324

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_or_pd N/A N/A N/A A N/A

_mm_xor_pd N/A N/A N/A A N/A

_mm_cmpeq_sd N/A N/A N/A A N/A

_mm_cmpeq_pd N/A N/A N/A A N/A

_mm_cmplt_sd N/A N/A N/A A N/A

_mm_cmplt_pd N/A N/A N/A A N/A

_mm_cmple_sd N/A N/A N/A A N/A

_mm_cmple_pd N/A N/A N/A A N/A

_mm_cmpgt_sd N/A N/A N/A A N/A

_mm_cmpgt_pd N/A N/A N/A A N/A

_mm_cmpge_sd N/A N/A N/A A N/A

_mm_cmpge_pd N/A N/A N/A A N/A

_mm_cmpneq_sd N/A N/A N/A A N/A

_mm_cmpneq_pd N/A N/A N/A A N/A

_mm_cmpnlt_sd N/A N/A N/A A N/A

_mm_cmpnlt_pd N/A N/A N/A A N/A

_mm_cmpnle_sd N/A N/A N/A A N/A

_mm_cmpnle_pd N/A N/A N/A A N/A

_mm_cmpngt_sd N/A N/A N/A A N/A

_mm_cmpngt_pd N/A N/A N/A A N/A

_mm_cmpnge_sd N/A N/A N/A A N/A

_mm_cmpnge_pd N/A N/A N/A A N/A

Intel® C++ Intrinsics Reference

325

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_cmpord_pd N/A N/A N/A A N/A

_mm_cmpord_sd N/A N/A N/A A N/A

_mm_cmpunord_pd N/A N/A N/A A N/A

_mm_cmpunord_sd N/A N/A N/A A N/A

_mm_comieq_sd N/A N/A N/A A N/A

_mm_comilt_sd N/A N/A N/A A N/A

_mm_comile_sd N/A N/A N/A A N/A

_mm_comigt_sd N/A N/A N/A A N/A

_mm_comige_sd N/A N/A N/A A N/A

_mm_comineq_sd N/A N/A N/A A N/A

_mm_ucomieq_sd N/A N/A N/A A N/A

_mm_ucomilt_sd N/A N/A N/A A N/A

_mm_ucomile_sd N/A N/A N/A A N/A

_mm_ucomigt_sd N/A N/A N/A A N/A

_mm_ucomige_sd N/A N/A N/A A N/A

_mm_ucomineq_sd N/A N/A N/A A N/A

_mm_cvtepi32_pd N/A N/A N/A A N/A

_mm_cvtpd_epi32 N/A N/A N/A A N/A

_mm_cvttpd_epi32 N/A N/A N/A A N/A

_mm_cvtepi32_ps N/A N/A N/A A N/A

_mm_cvtps_epi32 N/A N/A N/A A N/A

_mm_cvttps_epi32 N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

326

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_cvtpd_ps N/A N/A N/A A N/A

_mm_cvtps_pd N/A N/A N/A A N/A

_mm_cvtsd_ss N/A N/A N/A A N/A

_mm_cvtss_sd N/A N/A N/A A N/A

_mm_cvtsd_si32 N/A N/A N/A A N/A

_mm_cvttsd_si32 N/A N/A N/A A N/A

_mm_cvtsi32_sd N/A N/A N/A A N/A

_mm_cvtpd_pi32 N/A N/A N/A A N/A

_mm_cvttpd_pi32 N/A N/A N/A A N/A

_mm_cvtpi32_pd N/A N/A N/A A N/A

_mm_unpackhi_pd N/A N/A N/A A N/A

_mm_unpacklo_pd N/A N/A N/A A N/A

_mm_unpacklo_pd N/A N/A N/A A N/A

_mm_shuffle_pd N/A N/A N/A A N/A

_mm_load_pd N/A N/A N/A A N/A

_mm_load1_pd N/A N/A N/A A N/A

_mm_loadr_pd N/A N/A N/A A N/A

_mm_loadu_pd N/A N/A N/A A N/A

_mm_load_sd N/A N/A N/A A N/A

_mm_loadh_pd N/A N/A N/A A N/A

_mm_loadl_pd N/A N/A N/A A N/A

_mm_set_sd N/A N/A N/A A N/A

Intel® C++ Intrinsics Reference

327

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_set1_pd N/A N/A N/A A N/A

_mm_set_pd N/A N/A N/A A N/A

_mm_setr_pd N/A N/A N/A A N/A

_mm_setzero_pd N/A N/A N/A A N/A

_mm_move_sd N/A N/A N/A A N/A

_mm_store_sd N/A N/A N/A A N/A

_mm_store1_pd N/A N/A N/A A N/A

_mm_store_pd N/A N/A N/A A N/A

_mm_storeu_pd N/A N/A N/A A N/A

_mm_storer_pd N/A N/A N/A A N/A

_mm_storeh_pd N/A N/A N/A A N/A

_mm_storel_pd N/A N/A N/A A N/A

_mm_add_epi8 N/A N/A N/A A N/A

_mm_add_epi16 N/A N/A N/A A N/A

_mm_add_epi32 N/A N/A N/A A N/A

_mm_add_si64 N/A N/A N/A A N/A

_mm_add_epi64 N/A N/A N/A A N/A

_mm_adds_epi8 N/A N/A N/A A N/A

_mm_adds_epi16 N/A N/A N/A A N/A

_mm_adds_epu8 N/A N/A N/A A N/A

_mm_adds_epu16 N/A N/A N/A A N/A

_mm_avg_epu8 N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

328

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_avg_epu16 N/A N/A N/A A N/A

_mm_madd_epi16 N/A N/A N/A A N/A

_mm_max_epi16 N/A N/A N/A A N/A

_mm_max_epu8 N/A N/A N/A A N/A

_mm_min_epi16 N/A N/A N/A A N/A

_mm_min_epu8 N/A N/A N/A A N/A

_mm_mulhi_epi16 N/A N/A N/A A N/A

_mm_mulhi_epu16 N/A N/A N/A A N/A

_mm_mullo_epi16 N/A N/A N/A A N/A

_mm_mul_su32 N/A N/A N/A A N/A

_mm_mul_epu32 N/A N/A N/A A N/A

_mm_sad_epu8 N/A N/A N/A A N/A

_mm_sub_epi8 N/A N/A N/A A N/A

_mm_sub_epi16 N/A N/A N/A A N/A

_mm_sub_epi32 N/A N/A N/A A N/A

_mm_sub_si64 N/A N/A N/A A N/A

_mm_sub_epi64 N/A N/A N/A A N/A

_mm_subs_epi8 N/A N/A N/A A N/A

_mm_subs_epi16 N/A N/A N/A A N/A

_mm_subs_epu8 N/A N/A N/A A N/A

_mm_subs_epu16 N/A N/A N/A A N/A

_mm_and_si128 N/A N/A N/A A N/A

Intel® C++ Intrinsics Reference

329

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_andnot_si128 N/A N/A N/A A N/A

_mm_or_si128 N/A N/A N/A A N/A

_mm_xor_si128 N/A N/A N/A A N/A

_mm_slli_si128 N/A N/A N/A A N/A

_mm_slli_epi16 N/A N/A N/A A N/A

_mm_sll_epi16 N/A N/A N/A A N/A

_mm_slli_epi32 N/A N/A N/A A N/A

_mm_sll_epi32 N/A N/A N/A A N/A

_mm_slli_epi64 N/A N/A N/A A N/A

_mm_sll_epi64 N/A N/A N/A A N/A

_mm_srai_epi16 N/A N/A N/A A N/A

_mm_sra_epi16 N/A N/A N/A A N/A

_mm_srai_epi32 N/A N/A N/A A N/A

_mm_sra_epi32 N/A N/A N/A A N/A

_mm_srli_si128 N/A N/A N/A A N/A

_mm_srli_epi16 N/A N/A N/A A N/A

_mm_srl_epi16 N/A N/A N/A A N/A

_mm_srli_epi32 N/A N/A N/A A N/A

_mm_srl_epi32 N/A N/A N/A A N/A

_mm_srli_epi64 N/A N/A N/A A N/A

_mm_srl_epi64 N/A N/A N/A A N/A

_mm_cmpeq_epi8 N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

330

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_cmpeq_epi16 N/A N/A N/A A N/A

_mm_cmpeq_epi32 N/A N/A N/A A N/A

_mm_cmpgt_epi8 N/A N/A N/A A N/A

_mm_cmpgt_epi16 N/A N/A N/A A N/A

_mm_cmpgt_epi32 N/A N/A N/A A N/A

_mm_cmplt_epi8 N/A N/A N/A A N/A

_mm_cmplt_epi16 N/A N/A N/A A N/A

_mm_cmplt_epi32 N/A N/A N/A A N/A

_mm_cvtsi32_si128 N/A N/A N/A A N/A

_mm_cvtsi128_si32 N/A N/A N/A A N/A

_mm_packs_epi16 N/A N/A N/A A N/A

_mm_packs_epi32 N/A N/A N/A A N/A

_mm_packus_epi16 N/A N/A N/A A N/A

_mm_extract_epi16 N/A N/A N/A A N/A

_mm_insert_epi16 N/A N/A N/A A N/A

_mm_movemask_epi8 N/A N/A N/A A N/A

_mm_shuffle_epi32 N/A N/A N/A A N/A

_mm_shufflehi_epi16 N/A N/A N/A A N/A

_mm_shufflelo_epi16 N/A N/A N/A A N/A

_mm_unpackhi_epi8 N/A N/A N/A A N/A

_mm_unpackhi_epi16 N/A N/A N/A A N/A

_mm_unpackhi_epi32 N/A N/A N/A A N/A

Intel® C++ Intrinsics Reference

331

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_unpackhi_epi64 N/A N/A N/A A N/A

_mm_unpacklo_epi8 N/A N/A N/A A N/A

_mm_unpacklo_epi16 N/A N/A N/A A N/A

_mm_unpacklo_epi32 N/A N/A N/A A N/A

_mm_unpacklo_epi64 N/A N/A N/A A N/A

_mm_move_epi64 N/A N/A N/A A N/A

_mm_movpi64_epi64 N/A N/A N/A A N/A

_mm_movepi64_pi64 N/A N/A N/A A N/A

_mm_load_si128 N/A N/A N/A A N/A

_mm_loadu_si128 N/A N/A N/A A N/A

_mm_loadl_epi64 N/A N/A N/A A N/A

_mm_set_epi64 N/A N/A N/A A N/A

_mm_set_epi32 N/A N/A N/A A N/A

_mm_set_epi16 N/A N/A N/A A N/A

_mm_set_epi8 N/A N/A N/A A N/A

_mm_set1_epi64 N/A N/A N/A A N/A

_mm_set1_epi32 N/A N/A N/A A N/A

_mm_set1_epi16 N/A N/A N/A A N/A

_mm_set1_epi8 N/A N/A N/A A N/A

_mm_setr_epi64 N/A N/A N/A A N/A

_mm_setr_epi32 N/A N/A N/A A N/A

_mm_setr_epi16 N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

332

Intrinsic Across
All IA

MMX™
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_setr_epi8 N/A N/A N/A A N/A

_mm_setzero_si128 N/A N/A N/A A N/A

_mm_store_si128 N/A N/A N/A A N/A

_mm_storeu_si128 N/A N/A N/A A N/A

_mm_storel_epi64 N/A N/A N/A A N/A

_mm_maskmoveu_si128 N/A N/A N/A A N/A

_mm_stream_pd N/A N/A N/A A N/A

_mm_stream_si128 N/A N/A N/A A N/A

_mm_clflush N/A N/A N/A A N/A

_mm_lfence N/A N/A N/A A N/A

_mm_mfence N/A N/A N/A A N/A

_mm_stream_si32 N/A N/A N/A A N/A

_mm_pause N/A N/A N/A A N/A

Intel® C++ Class Libraries
Introduction to the Class Libraries

The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The
principle of SIMD operations is to exploit microprocessor architecture through parallel processing.
The effect of parallel processing is increased data throughput using fewer clock cycles. The
objective is to improve application performance of complex and computation-intensive audio,
video, and graphical data bit streams.

Hardware and Software Requirements
You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the
class libraries. The Intel® C++ Class Libraries are functions abstracted from the instruction
extensions available on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Intel® C++ Intrinsics Reference

333

Header
File

Extension Set Available on These Processors

ivec.h MMX� technology Pentium® with MMX technology, Pentium II, Pentium III,
Pentium 4, Intel® Xeon�, and Itanium® processors

fvec.h Streaming SIMD
Extensions

Pentium III, Pentium 4, Intel Xeon, and Itanium processors

dvec.h Streaming SIMD
Extensions 2

Pentium 4 and Intel Xeon processors

About the Classes
The Intel® C++ Class Libraries for SIMD Operations include:

• Integer vector (Ivec) classes

• Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: ivec.h, fvec.h, and
dvec.h. The classes themselves are not partitioned like this. The classes are named according to
the underlying type of operation. The header files are partitioned according to architecture:

• ivec.h is specific to architectures with MMX� technology

• fvec.h is specific to architectures with Streaming SIMD Extensions

• dvec.h is specific to architectures with Streaming SIMD Extensions 2

Streaming SIMD Extensions 2 intrinsics cannot be used on Itanium®-based systems. The
mmclass.h header file includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel architecture,
particularly code that would benefit from the use of SIMD instructions. You should be familiar
with C++ and the use of C++ classes.

334

Details About the Libraries
The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class
Libraries. These processor-instruction extensions enable parallel processing using the single
instruction-multiple data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

Performing four operations with a single instruction improves efficiency by a factor of four for
that particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the
C++ SIMD classes. Compare the coding required to add four 32-bit floating-point values, using
each of the available interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class
Libraries

... __m128 a,b,c;
__asm{ movaps xmm0,b
movaps xmm1,c addps
xmm0,xmm1 movaps a,
xmm0 } ...

#include <mmintrin.h>
... __m128 a,b,c; a =
_mm_add_ps(b,c); ...

#include
<fvec.h> ...
F32vec4 a,b,c;
a = b +c; ...

The table above shows an addition of two single-precision floating-point values using assembly
inlining, intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++
SIMD Class Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like
the standard notation in C++, making it much easier to implement over other methods.

C++ Classes and SIMD Operations
The use of C++ classes for SIMD operations is based on the concept of operating on arrays, or
vectors of data, in parallel. Consider the addition of two vectors, A and B, where each vector
contains four elements. Using the integer vector (Ivec) class, the elements A[i] and B[i]
from each array are summed as shown in the following example.

Typical Method of Adding Elements Using a Loop
short a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] *

The following example shows the same results using one operation with Ivec Classes.

SIMD Method of Adding Elements Using Ivec Classes
sIs16vec4 ivecA, ivecB, ivec C; /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecC0, ivecC1, ivecC2, ivecC3 */

Intel® C++ Intrinsics Reference

335

Available Classes
The Intel C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes
and libraries.

SIMD Vector Classes

Instruction Set Class Signedness Data
Type

Size Elements Header
File

MMX�
technology
(available for
IA-32- and
Itanium®-based
systems)

I64vec1 unspecified __m64 64 1 ivec.h

 I32vec2 unspecified int 32 2 ivec.h

 Is32vec2 signed int 32 2 ivec.h

 Iu32vec2 unsigned int 32 2 ivec.h

 I16vec4 unspecified short 16 4 ivec.h

 Is16vec4 signed short 16 4 ivec.h

 Iu16vec4 unsigned short 16 4 ivec.h

 I8vec8 unspecified char 8 8 ivec.h

 Is8vec8 signed char 8 8 ivec.h

 Iu8vec8 unsigned char 8 8 ivec.h

Streaming SIMD
Extensions
(available for
IA-32 and
Itanium-based
systems)

F32vec4 signed float 32 4 fvec.h

 F32vec1 signed float 32 1 fvec.h

Streaming SIMD
Extensions 2
(available for
IA-32-based
systems only)

F64vec2 signed double 64 2 dvec.h

336

Instruction Set Class Signedness Data
Type

Size Elements Header
File

 I128vec1 unspecified __m128i 128 1 dvec.h

 I64vec2 unspecified long
int

64 4 dvec.h

 Is64vec2 signed long
int

64 4 dvec.h

 Iu64vec2 unsigned long
int

32 4 dvec.h

 I32vec4 unspecified int 32 4 dvec.h

 Is32vec4 signed int 32 4 dvec.h

 Iu32vec4 unsigned int 32 4 dvec.h

 I16vec8 unspecified int 16 8 dvec.h

 Is16vec8 signed int 16 8 dvec.h

 Iu16vec8 unsigned int 16 8 dvec.h

 I8vec16 unspecified char 8 16 dvec.h

 Is8vec16 signed char 8 16 dvec.h

 Iu8vec16 unsigned char 8 16 dvec.h

Most classes contain similar functionality for all data types and are represented by all available
intrinsics. However, some capabilities do not translate from one data type to another without
suffering from poor performance, and are therefore excluded from individual classes.

 Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not
implemented.
(For example, _mm_shuffle_ps, _mm_shuffle_pi16, _mm_extract_pi16,
_mm_insert_pi16).

Intel® C++ Intrinsics Reference

337

Access to Classes Using Header Files
The required class header files are installed in the include directory with the Intel® C++ Compiler.
To enable the classes, use the #include directive in your program file as shown in the table that
follows.

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX Technology #include <ivec.h>

Streaming SIMD Extensions #include <fvec.h>

Streaming SIMD Extensions 2 #include <dvec.h>

Each succeeding file from the top down includes the preceding class. You only need to include
fvec.h if you want to use both the Ivec and Fvec classes. Similarly, to use all the classes
including those for the Streaming SIMD Extensions 2, you need only to include the dvec.h file.

Usage Precautions
When using the C++ classes, you should follow some general guidelines. More detailed usage
rules for each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix MMX
instructions, called by Ivec classes, with Intel x87 architecture floating-point instructions, called
by Fvec classes. Floating-point instructions exist in the following Fvec functions:

• fvec constructors

• debug functions (cout and element access)

• rsqrt_nr

Note

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with
the EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following
example.

ivecA = ivecA &
ivecB;

/* Ivec logical operation that uses MMX
instructions */

empty (); /* clear state */

cout << f32vec4a; /* F32vec4 operation that uses x87 floating-
point instructions */

 Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an
incorrect register state.

338

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer
to this topic before coding with the Ivec classes.

Capabilities
The fundamental capabilities of each C++ SIMD class include:

• computation

• horizontal data motion

• branch compression/elimination

• caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired
results.

Computation
The SIMD C++ classes contain vertical operator support for most arithmetic operations, including
shifting and saturation.

Computation operations include: +, -, *, /, reciprocal (rcp and rcp_nr), square root (sqrt),
reciprocal square root (rsqrt and rsqrt_nr).

Operations rcp and rsqrt are new approximating instructions with very short latencies that
produce results with at least 12 bits of accuracy. Operations rcp_nr and rsqrt_nr use
software refining techniques to enhance the accuracy of the approximations, with a minimal
impact on performance. (The "nr" stands for Newton-Raphson, a mathematical technique for
improving performance using an approximate result.)

Horizontal Data Support
The C++ SIMD classes provide horizontal support for some arithmetic operations. The term
"horizontal" indicates computation across the elements of one vector, as opposed to the vertical,
element-by-element operations on two different vectors.

The add_horizontal, unpack_low and pack_sat functions are examples of horizontal
data support. This support enables certain algorithms that cannot exploit the full potential of SIMD
instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed
in the C++ classes due to their immediate arguments. However, the C++ class implementation
enables you to mix shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvecb;
fvecd = _mm_shuffle_ps(fveca,fvecb,0);

Typically every instruction with horizontal data flow contains some inefficiency in the
implementation. If possible, implement your algorithms without using the horizontal capabilities.

Branch Compression/Elimination
Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate
branches, using logical operations, max and min functions, conditional selects, and compares.
Consider the following example:

short a[4], b[4], c[4];
for (i=0; i<4; i++)
c[i] = a[i] > b[i] ? a[i] : b[i];

Intel® C++ Intrinsics Reference

339

This operation is independent of the value of i. For each i, the result could be either A or B
depending on the actual values. A simple way of removing the branch altogether is to use the
select_gt function, as follows:

Is16vec4 a, b, c
c = select_gt(a, b, a, b)

Caching Hints
Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can
minimize the effects of memory latency. Streaming hints allow you to indicate that certain data
should not be cached. This results in higher performance for data that should be cached.

Integer Vector Classes
The Ivec classes provide an interface to SIMD processing using integer vectors of various sizes.
The class hierarchy is represented in the following figure.

Ivec Class Hierarchy

The M64 and M128 classes define the __m64 and __m128i data types from which the rest of the
Ivec classes are derived. The first generation of child classes are derived based solely on bit sizes
of 128, 64, 32, 16, and 8 respectively for the I128vec1, I64vec1, 164vec2, I32vec2,
I32vec4, I16vec4, I16vec8, I8vec16, and I8vec8 classes. The latter seven of the these
classes require specification of signedness and saturation.

 Caution

Do not intermix the M64 and M128 data types. You will get unexpected behavior if you do.

The signedness is indicated by the s and u in the class names:

Is64vec2
Iu64vec2
Is32vec4
Iu32vec4
Is16vec8
Iu16vec8
Is8vec16
Iu8vec16
Is32vec2
Iu32vec2
Is16vec4
Iu16vec4
Is8vec8
Iu8vec8

340

Terms, Conventions, and Syntax
The following are special terms and syntax used in this chapter to describe functionality of the
classes with respect to their associated operations.

Ivec Class Syntax Conventions
The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<type><signedness><bits>vec<elements>
{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

where

type indicates floating point (F) or integer (I)

signedness indicates signed (s) or unsigned (u). For the Ivec class, leaving this field
blank indicates an intermediate class. There are no unsigned Fvec classes,
therefore for the Fvec classes, this field is blank.

bits specifies the number of bits per element

elements specifies the number of elements

Special Terms and Conventions
The following terms are used to define the functionality and characteristics of the classes and
operations defined in this manual.

• Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the
same size. For example, the nearest common ancestor of Iu8vec8 and Is8vec8 is
I8vec8. Also, the nearest common ancestor between Iu8vec8 and I16vec4 is M64.

• Casting -- Changes the data type from one class to another. When an operation uses
different data types as operands, the return value of the operation must be assigned to a
single data type. Therefore, one or more of the data types must be converted to a required
data type. This conversion is known as a typecast. Sometimes, typecasting is automatic,
other times you must use special syntax to explicitly typecast it yourself.

• Operator Overloading -- This is the ability to use various operators on the same user-
defined data type of a given class. Once you declare a variable, you can add, subtract,
multiply, and perform a range of operations. Each family of classes accepts a specified range
of operators, and must comply by rules and restrictions regarding typecasting and operator
overloading as defined in the header files. The following table shows the notation used in
this documention to address typecasting, operator overloading, and other rules.

Intel® C++ Intrinsics Reference

341

Class Syntax Notation Conventions

Class Name Description

I[s|u][N]vec[N] Any value except I128vec1 nor I64vec1

I64vec1 __m64 data type

I[s|u]64vec2 two 64-bit values of any signedness

I[s|u]32vec4 four 32-bit values of any signedness

I[s|u]8vec16 eight 16-bit values of any signedness

I[s|u]16vec8 sixteen 8-bit values of any signedness

I[s|u]32vec2 two 32-bit values of any signedness

I[s|u]16vec4 four 16-bit values of any signedness

I[s|u]8vec8 eight 8-bit values of any signedness

Rules for Operators
To use operators with the Ivec classes you must use one of the following three syntax
conventions:

[Ivec_Class] R = [Ivec_Class] A [operator][Ivec_Class] B

Example 1: I64vec1 R = I64vec1 A & I64vec1 B;
[Ivec_Class] R =[operator] ([Ivec_Class] A,[Ivec_Class] B)

Example 2: I64vec1 R = andnot(I64vec1 A, I64vec1 B);
[Ivec_Class] R [operator]= [Ivec_Class] A

Example 3: I64vec1 R &= I64vec1 A;

[operator]an operator (for example, &, |, or ^)

[Ivec_Class] an Ivec class

R, A, B variables declared using the pertinent Ivec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means
that it is illegal to mix different types without an explicit typecasting. "Automatic" means that you
can mix types freely and the compiler will do the typecasting for you.

342

Summary of Rules Major Operators

Operators Sign
Typecasting

Size
Typecasting

Other Typecasting Requirements

Assignment N/A N/A N/A

Logical Automatic Automatic
(to left)

Explicit typecasting is required for
different types used in non-logical
expressions on the right side of the
assignment.

Addition and
Subtraction

Automatic Explicit N/A

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to ensure arithmetic
shift.

Compare Automatic Explicit Explicit casting is required for signed
classes for the less-than or greater-than
operations.

Conditional
Select

Automatic Explicit Explicit casting is required for signed
classes for less-than or greater-than
operations.

Data Declaration and Initialization
The following table shows literal examples of constructor declarations and data type initialization
for all class sizes. All values are initialized with the most significant element on the left and the
least significant to the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration M128 I128vec1 A; Iu8vec16 A;

Declaration M64 I64vec1 A; Iu8vec16 A;

__m128
Initialization

M128 I128vec1 A(__m128 m); Iu16vec8(__m128
m);

__m64
Initialization

M64 I64vec1 A(__m64 m);Iu8vec8 A(__m64 m);

__int64
Initialization

M64 I64vec1 A = __int64 m; Iu8vec8 A
=__int64 m;

Intel® C++ Intrinsics Reference

343

Operation Class Syntax

int i
Initialization

M64 I64vec1 A = int i; Iu8vec8 A = int i;

int initialization I32vec2 I32vec2 A(int A1, int A0);
Is32vec2 A(signed int A1, signed int
A0);
Iu32vec2 A(unsigned int A1, unsigned int
A0);

int Initialization I32vec4 I32vec4 A(short A3, short A2, short A1,
short A0);
Is32vec4 A(signed short A3, ..., signed
short A0);
Iu32vec4 A(unsigned short A3, ...,
unsigned short A0);

short int
Initialization

I16vec4 I16vec4 A(short A3, short A2, short A1,
short A0);
Is16vec4 A(signed short A3, ..., signed
short A0);
Iu16vec4 A(unsigned short A3, ...,
unsigned short A0);

short int
Initialization

I16vec8 I16vec8 A(short A7, short A6, ..., short
A1, short A0);
Is16vec8 A(signed A7, ..., signed short
A0);
Iu16vec8 A(unsigned short A7, ...,
unsigned short A0);

char
Initialization

I8vec8 I8vec8 A(char A7, char A6, ..., char A1,
char A0);
Is8vec8 A(signed char A7, ..., signed
char A0);
Iu8vec8 A(unsigned char A7, ...,
unsigned char A0);

char
Initialization

I8vec16 I8vec16 A(char A15, ..., char A0);
Is8vec16 A(signed char A15, ..., signed
char A0);
Iu8vec16 A(unsigned char A15, ...,
unsigned char A0);

344

Assignment Operator
Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one
Ivec object to another is automatic.

Assignment Operator Examples
Is16vec4 A;
Is8vec8 B;
I64vec1 C;
A = B; /* assign Is8vec8 to Is16vec4 */
B = C; /* assign I64vec1 to Is8vec8 */
B = A & C; /* assign M64 result of '&' to Is8vec8 */

Logical Operators
The logical operators use the symbols and intrinsics listed in the following table.

Operator Symbols Syntax Usage Bitwise
Operation

Standard w/assign Standard w/assign

Corresponding
Intrinsic

AND & &= R = A & B R &= A _mm_and_si64
_mm_and_si128

OR | |= R = A | B R |= A _mm_and_si64
_mm_and_si128

XOR ^ ^= R = A^B R ^= A _mm_and_si64
_mm_and_si128

ANDNOT andnot N/A R = A
andnot B

N/A _mm_and_si64
_mm_and_si128

Logical Operators and Miscellaneous Exceptions.

A and B converted to M64. Result assigned to Iu8vec8.

I64vec1 A;
Is8vec8 B;
Iu8vec8 C;
C = A & B;

Same size and signedness operators return the nearest common ancestor.

I32vec2 R = Is32vec2 A ^ Iu32vec2 B;

A&B returns M64, which is cast to Iu8vec8.

C = Iu8vec8(A&B)+ C;

When A and B are of the same class, they return the same type. When A and B are of different
classes, the return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables,
apply when A and B are of different classes.

Intel® C++ Intrinsics Reference

345

Ivec Logical Operator Overloading

Return (R) AND OR XOR NAND A Operand B Operand

I64vec1 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I64vec2 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I32vec2 R & | ^ andnot I[s|u]32vec2 A I[s|u]32vec2 B

I32vec4 R & | ^ andnot I[s|u]32vec4 A I[s|u]32vec4 B

I16vec4 R & | ^ andnot I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R & | ^ andnot I[s|u]16vec8 A I[s|u]16vec8 B

I8vec8 R & | ^ andnot I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R & | ^ andnot I[s|u]8vec16 A I[s|u]8vec16 B

For logical operators with assignment, the return value of R is always the same data type as the
pre-declared value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type Left Side (R) AND OR XOR Right Side (Any Ivec Type)

I128vec1 I128vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec1 I64vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec2 I64vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec4 I[x]32vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec2 I[x]32vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec8 I[x]16vec8 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec4 I[x]16vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec16 I[x]8vec16 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec8 I[x]8vec8 R &= |= ^= I[s|u][N]vec[N] A;

346

Addition and Subtraction Operators
The addition and subtraction operators return the class of the nearest common ancestor when the
right-side operands are of different signs. The following code provides examples of usage and
miscellaneous exceptions.

Syntax Usage for Addition and Subtraction Operators

Return nearest common ancestor type, I16vec4.

Is16vec4 A;
Iu16vec4 B;
I16vec4 C;
C = A + B;

Returns type left-hand operand type.

Is16vec4 A;
Iu16vec4 B;
A += B;
B -= A;

Explicitly convert B to Is16vec4.

Is16vec4 A,C;
Iu32vec24 B;
C = A + C;
C = A + (Is16vec4)B;

Addition and Subtraction Operators with Corresponding Intrinsics

Operation Symbols Syntax Corresponding Intrinsics

Addition +
+=

R = A + B
R += A

_mm_add_epi64
_mm_add_epi32
_mm_add_epi16
_mm_add_epi8
_mm_add_pi32
_mm_add_pi16
_mm_add_pi8

Subtraction -
-=

R = A - B
R -= A

_mm_sub_epi64
_mm_sub_epi32
_mm_sub_epi16
_mm_sub_epi8
_mm_sub_pi32
_mm_sub_pi16
_mm_sub_pi8

The following table lists addition and subtraction return values for combinations of classes when
the right side operands are of different signedness. The two operands must be the same size,
otherwise you must explicitly indicate the typecasting.

Intel® C++ Intrinsics Reference

347

Addition and Subtraction Operator Overloading

Return Value Available Operators Right Side Operands

R Add Sub A B

I64vec2 R + - I[s|u]64vec2 A I[s|u]64vec2 B

I32vec4 R + - I[s|u]32vec4 A I[s|u]32vec4 B

I32vec2 R + - I[s|u]32vec2 A I[s|u]32vec2 B

I16vec8 R + - I[s|u]16vec8 A I[s|u]16vec8 B

I16vec4 R + - I[s|u]16vec4 A I[s|u]16vec4 B

I8vec8 R + - I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R + - I[s|u]8vec2 A I[s|u]8vec16 B

The following table shows the return data type values for operands of the addition and subtraction
operators with assignment. The left side operand determines the size and signedness of the return
value. The right side operand must be the same size as the left operand; otherwise, you must use
an explicit typecast.

Addition and Subtraction with Assignment

Return Value (R) Left Side (R) Add Sub Right Side (A)

I[x]32vec4 I[x]32vec2 R += -= I[s|u]32vec4 A;

I[x]32vec2 R I[x]32vec2 R += -= I[s|u]32vec2 A;

I[x]16vec8 I[x]16vec8 += -= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 += -= I[s|u]16vec4 A;

I[x]8vec16 I[x]8vec16 += -= I[s|u]8vec16 A;

I[x]8vec8 I[x]8vec8 += -= I[s|u]8vec8 A;

348

Multiplication Operators
The multiplication operators can only accept and return data types from the I[s|u]16vec4 or
I[s|u]16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators

Explicitly convert B to Is16vec4.

Is16vec4 A,C;
Iu32vec2 B;
C = A * C;
C = A * (Is16vec4)B;

Return nearest common ancestor type, I16vec4

Is16vec4 A;
Iu16vec4 B;
I16vec4 C;
C = A + B;

The mul_high and mul_add functions take Is16vec4 data only.

Is16vec4 A,B,C,D;
C = mul_high(A,B);
D = mul_add(A,B);

Multiplication Operators with Corresponding Intrinsics

Symbols Syntax Usage Intrinsic

* *= R = A * B
R *= A

_mm_mullo_pi16
_mm_mullo_epi16

mul_high N/A R = mul_high(A, B) _mm_mulhi_pi16
_mm_mulhi_epi16

mul_add N/A R = mul_high(A, B) _mm_madd_pi16
_mm_madd_epi16

The multiplication return operators always return the nearest common ancestor as listed in the
table that follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate
typecasting.

Multiplication Operator Overloading

R Mul A B

I16vec4 R * I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R * I[s|u]16vec8 A I[s|u]16vec8 B

Is16vec4 R mul_add Is16vec4 A Is16vec4 B

Is16vec8 mul_add Is16vec8 A Is16vec8 B

Intel® C++ Intrinsics Reference

349

R Mul A B

Is32vec2 R mul_high Is16vec4 A Is16vec4 B

Is32vec4 R mul_high s16vec8 A Is16vec8 B

The following table shows the return values and data type assignments for operands of the
multiplication operators with assignment. All operands must be 16 bytes in size. If the operands
are not the right size, you must use an explicit typecast.

Multiplication with Assignment

Return Value (R) Left Side (R) Mul Right Side (A)

I[x]16vec8 I[x]16vec8 *= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 *= I[s|u]16vec4 A;

Shift Operators
The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64
data type. The first or left operand of a << can be of any type except I[s|u]8vec[8|16] .

Example Syntax Usage for Shift Operators

Automatic size and sign conversion.

Is16vec4 A,C;
Iu32vec2 B;
C = A;

A&B returns I16vec4, which must be cast to Iu16vec4 to ensure logical shift, not arithmetic
shift.

Is16vec4 A, C;
Iu16vec4 B, R;
R = (Iu16vec4)(A & B) C;

A&B returns I16vec4, which must be cast to Is16vec4 to ensure arithmetic shift, not logical
shift.

R = (Is16vec4)(A & B) C;

350

Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

Shift Left <<
&=

R = A << B
R &= A

_mm_sll_si64
_mm_slli_si64
_mm_sll_pi32
_mm_slli_pi32
_mm_sll_pi16
_mm_slli_pi16

Shift Right >> R = A >> B
R >>= A

_mm_srl_si64
_mm_srli_si64
_mm_srl_pi32
_mm_srli_pi32
_mm_srl_pi16
_mm_srli_pi16
_mm_sra_pi32
_mm_srai_pi32
_mm_sra_pi16
_mm_srai_pi16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate
classes correspond to logical shifts. The table below shows how the return type is determined by
the first argument type.

Shift Operator Overloading

Operation R Right
Shift

Left
Shift

A B

Logical I64vec1 >> >>= << <<= I64vec1
A;

I64vec1 B;

Logical I32vec2 >> >>= << <<= I32vec2 A I32vec2 B;

Arithmetic Is32vec2 >> >>= << <<= Is32vec2
A

I[s|u][N]vec[N]
B;

Logical Iu32vec2 >> >>= << <<= Iu32vec2
A

I[s|u][N]vec[N]
B;

Logical I16vec4 >> >>= << <<= I16vec4 A I16vec4 B

Arithmetic Is16vec4 >> >>= << <<= Is16vec4
A

I[s|u][N]vec[N]
B;

Logical Iu16vec4 >> >>= << <<= Iu16vec4
A

I[s|u][N]vec[N]
B;

Intel® C++ Intrinsics Reference

351

Comparison Operators
The equality and inequality comparison operands can have mixed signedness, but they must be of
the same size. The comparison operators for less-than and greater-than must be of the same sign
and size.

Example of Syntax Usage for Comparison Operator

The nearest common ancestor is returned for compare for equal/not-equal operations.

Iu8vec8 A;
Is8vec8 B;
I8vec8 C;
C = cmpneq(A,B);

Type cast needed for different-sized elements for equal/not-equal comparisons.

Iu8vec8 A, C;
Is16vec4 B;
C = cmpeq(A,(Iu8vec8)B);

Type cast needed for sign or size differences for less-than and greater-than comparisons.

Iu16vec4 A;
Is16vec4 B, C;
C = cmpge((Is16vec4)A,B);
C = cmpgt(B,C);

Inequality Comparison Symbols and Corresponding Intrinsics

Compare
For:

Operators Syntax Intrinsic

Equality cmpeq R = cmpeq(A,
B)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Inequality cmpneq R =
cmpneq(A, B)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_andnot_si64

Greater Than cmpgt R = cmpgt(A,
B)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

cmpge R = cmpge(A,
B)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

_mm_andnot_si64

Less Than cmplt R = cmplt(A,
B)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Less Than
or Equal To

cmple R = cmple(A,
B)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

_mm_andnot_si64

352

Comparison operators have the restriction that the operands must be the size and sign as listed in
the Compare Operator Overloading table.

Compare Operator Overloading

R Comparison A B

I32vec2 R cmpeq
cmpne

I[s|u]32vec2 B I[s|u]32vec2 B

I16vec4 R I[s|u]16vec4 B I[s|u]16vec4 B

I8vec8 R I[s|u]8vec8 B I[s|u]8vec8 B

I32vec2 R cmpgt
cmpge
cmplt
cmple

Is32vec2 B Is32vec2 B

I16vec4 R Is16vec4 B Is16vec4 B

I8vec8 R Is8vec8 B Is8vec8 B

Conditional Select Operators
For conditional select operands, the third and fourth operands determine the type returned. Third
and fourth operands with same size, but different signedness, return the nearest common ancestor
data type.

Conditional Select Syntax Usage

Return the nearest common ancestor data type if third and fourth operands are of the same size,
but different signs.

I16vec4 R = select_neq(Is16vec4, Is16vec4, Is16vec4, Iu16vec4);

Conditional Select for Equality

R0 := (A0 == B0) ? C0 : D0;
R1 := (A1 == B1) ? C1 : D1;
R2 := (A2 == B2) ? C2 : D2;
R3 := (A3 == B3) ? C3 : D3;

Conditional Select for Inequality

R0 := (A0 != B0) ? C0 : D0;
R1 := (A1 != B1) ? C1 : D1;
R2 := (A2 != B2) ? C2 : D2;
R3 := (A3 != B3) ? C3 : D3;

Intel® C++ Intrinsics Reference

353

Conditional Select Symbols and Corresponding Intrinsics

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Equality select_eq R =
select_eq(A,
B, C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_and_si64
_mm_or_si64
_mm_andnot_si64

Inequality select_neq R =
select_neq(A,
B, C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Greater Than select_gt R =
select_gt(A,
B, C, D)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

select_ge R =
select_gt(A,
B, C, D)

_mm_cmpge_pi32
_mm_cmpge_pi16
_mm_cmpge_pi8

Less Than select_lt R =
select_lt(A,
B, C, D)

_mm_cmplt_pi32
_mm_cmplt_pi16
_mm_cmplt_pi8

Less Than
or Equal To

select_le R =
select_le(A,
B, C, D)

_mm_cmple_pi32
_mm_cmple_pi16
_mm_cmple_pi8

All conditional select operands must be of the same size. The return data type is the nearest
common ancestor of operands C and D. For conditional select operations using greater-than or
less-than operations, the first and second operands must be signed as listed in the table that
follows.

Conditional Select Operator Overloading

R Comparison A and B C D

I32vec2 R I[s|u]32vec2 I[s|u]32vec2 I[s|u]32vec2

I16vec4 R I[s|u]16vec4 I[s|u]16vec4 I[s|u]16vec4

I8vec8 R

select_eq
select_ne

I[s|u]8vec8 I[s|u]8vec8 I[s|u]8vec8

I32vec2 R Is32vec2 Is32vec2 Is32vec2

I16vec4 R Is16vec4 Is16vec4 Is16vec4

I8vec8 R

select_gt
select_ge
select_lt
select_le

Is8vec8 Is8vec8 Is8vec8

The table below shows the mapping of return values from R0 to R7 for any number of elements.
The same return value mappings also apply when there are fewer than four return values.

354

Conditional Select Operator Return Value Mapping

A and B Operands Return Value

A0 Available Operators B0

C and D operands

R0:= A0 == != > >= < <= B0 ? C0 : D0;

R1:= A0 == != > >= < <= B0 ? C1 : D1;

R2:= A0 == != > >= < <= B0 ? C2 : D2;

R3:= A0 == != > >= < <= B0 ? C3 : D3;

R4:= A0 == != > >= < <= B0 ? C4 : D4;

R5:= A0 == != > >= < <= B0 ? C5 : D5;

R6:= A0 == != > >= < <= B0 ? C6 : D6;

R7:= A0 == != > >= < <= B0 ? C7 : D7;

Debug
The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are
provided for debugging programs only. Use of these operations may result in loss of performance,
so you should not use them outside of debugging.

Output
The four 32-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << Is32vec4 A;
cout << Iu32vec4 A;
cout << hex << Iu32vec4 A; /* print in hex format */
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The two 32-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << Is32vec2 A;
cout << Iu32vec2 A;
cout << hex << Iu32vec2 A; /* print in hex format */
"[1]:A1 [0]:A0"

Corresponding Intrinsics: none

Intel® C++ Intrinsics Reference

355

The eight 16-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << Is16vec8 A;
cout << Iu16vec8 A;
cout << hex << Iu16vec8 A; /* print in hex format */
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The four 16-bit values of A are placed in the output buffer and printed in the following format
(default in decimal):

cout << Is16vec4 A;
cout << Iu16vec4 A;
cout << hex << Iu16vec4 A; /* print in hex format */
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format
(default is decimal):

cout << Is8vec16 A; cout << Iu8vec16 A; cout << hex << Iu8vec8 A;
/* print in hex format instead of decimal*/
"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9
[8]:A8 [7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The eight 8-bit values of A are placed in the output buffer and printed in the following format
(default is decimal):

cout << Is8vec8 A; cout << Iu8vec8 A;cout << hex << Iu8vec8 A;
/* print in hex format instead of decimal*/
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

Element Access Operators
int R = Is64vec2 A[i];
unsigned int R = Iu64vec2 A[i];
int R = Is32vec4 A[i];
unsigned int R = Iu32vec4 A[i];
int R = Is32vec2 A[i];
unsigned int R = Iu32vec2 A[i];
short R = Is16vec8 A[i];
unsigned short R = Iu16vec8 A[i];
short R = Is16vec4 A[i];
unsigned short R = Iu16vec4 A[i];
signed char R = Is8vec16 A[i];
unsigned char R = Iu8vec16 A[i];
signed char R = Is8vec8 A[i];

356

unsigned char R = Iu8vec8 A[i];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element
outside of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators
Is64vec2 A[i] = int R;
Is32vec4 A[i] = int R;
Iu32vec4 A[i] = unsigned int R;
Is32vec2 A[i] = int R;
Iu32vec2 A[i] = unsigned int R;
Is16vec8 A[i] = short R;
Iu16vec8 A[i] = unsigned short R;
Is16vec4 A[i] = short R;
Iu16vec4 A[i] = unsigned short R;
Is8vec16 A[i] = signed char R;
Iu8vec16 A[i] = unsigned char R;
Is8vec8 A[i] = signed char R;
Iu8vec8 A[i] = unsigned char R;

Assign R to element i of A. If DEBUG is enabled and the user tries to assign a value to an element
outside of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators
Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.

I364vec2 unpack_high(I64vec2 A, I64vec2 B);
Is64vec2 unpack_high(Is64vec2 A, Is64vec2 B);
Iu64vec2 unpack_high(Iu64vec2 A, Iu64vec2 B);
R0 = A1;
R1 = B1;

Corresponding intrinsic: _mm_unpackhi_epi64

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high
half of B .

I32vec4 unpack_high(I32vec4 A, I32vec4 B);
Is32vec4 unpack_high(Is32vec4 A, Is32vec4 B);
Iu32vec4 unpack_high(Iu32vec4 A, Iu32vec4 B);
R0 = A1;
R1 = B1;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _mm_unpackhi_epi32

Intel® C++ Intrinsics Reference

357

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.

I32vec2 unpack_high(I32vec2 A, I32vec2 B);
Is32vec2 unpack_high(Is32vec2 A, Is32vec2 B);
Iu32vec2 unpack_high(Iu32vec2 A, Iu32vec2 B);
R0 = A1;
R1 = B1;

Corresponding intrinsic: _mm_unpackhi_pi32

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high
half of B.

I16vec8 unpack_high(I16vec8 A, I16vec8 B);
Is16vec8 unpack_high(Is16vec8 A, Is16vec8 B);
Iu16vec8 unpack_high(Iu16vec8 A, Iu16vec8 B);
R0 = A2;
R1 = B2;
R2 = A3;
R3 = B3;

Corresponding intrinsic: _mm_unpackhi_epi16

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high
half of B.

I16vec4 unpack_high(I16vec4 A, I16vec4 B);
Is16vec4 unpack_high(Is16vec4 A, Is16vec4 B);
Iu16vec4 unpack_high(Iu16vec4 A, Iu16vec4 B);
R0 = A2;R1 = B2;
R2 = A3;R3 = B3;

Corresponding intrinsic: _mm_unpackhi_pi16

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high
half of B.

I8vec8 unpack_high(I8vec8 A, I8vec8 B);
Is8vec8 unpack_high(Is8vec8 A, I8vec8 B);
Iu8vec8 unpack_high(Iu8vec8 A, I8vec8 B);
R0 = A4;
R1 = B4;
R2 = A5;
R3 = B5;
R4 = A6;
R5 = B6;
R6 = A7;
R7 = B7;

Corresponding intrinsic: _mm_unpackhi_pi8

358

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high
half of B.

I8vec16 unpack_high(I8vec16 A, I8vec16 B);
Is8vec16 unpack_high(Is8vec16 A, I8vec16 B);
Iu8vec16 unpack_high(Iu8vec16 A, I8vec16 B);
R0 = A8;
R1 = B8;
R2 = A9;
R3 = B9;
R4 = A10;
R5 = B10;
R6 = A11;
R7 = B11;
R8 = A12;
R8 = B12;
R2 = A13;
R3 = B13;
R4 = A14;
R5 = B14;
R6 = A15;
R7 = B15;

Corresponding intrinsic: _mm_unpackhi_epi16

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B

R0 = A0;
R1 = B0;

Corresponding intrinsic: _mm_unpacklo_epi32

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B

I64vec2 unpack_low(I64vec2 A, I64vec2 B);
Is64vec2 unpack_low(Is64vec2 A, Is64vec2 B);
Iu64vec2 unpack_low(Iu64vec2 A, Iu64vec2 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low
half of B

I32vec4 unpack_low(I32vec4 A, I32vec4 B);
Is32vec4 unpack_low(Is32vec4 A, Is32vec4 B);
Iu32vec4 unpack_low(Iu32vec4 A, Iu32vec4 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

Intel® C++ Intrinsics Reference

359

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

I32vec2 unpack_low(I32vec2 A, I32vec2 B);
Is32vec2 unpack_low(Is32vec2 A, Is32vec2 B);
Iu32vec2 unpack_low(Iu32vec2 A, Iu32vec2 B);
R0 = A0;
R1 = B0;

Corresponding intrinsic: _mm_unpacklo_pi32

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low
half of B.

I16vec8 unpack_low(I16vec8 A, I16vec8 B);
Is16vec8 unpack_low(Is16vec8 A, Is16vec8 B);
Iu16vec8 unpack_low(Iu16vec8 A, Iu16vec8 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _mm_unpacklo_epi16

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low
half of B.

I16vec4 unpack_low(I16vec4 A, I16vec4 B);
Is16vec4 unpack_low(Is16vec4 A, Is16vec4 B);
Iu16vec4 unpack_low(Iu16vec4 A, Iu16vec4 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_pi16

360

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half
of B.

I8vec16 unpack_low(I8vec16 A, I8vec16 B);
Is8vec16 unpack_low(Is8vec16 A, Is8vec16 B);
Iu8vec16 unpack_low(Iu8vec16 A, Iu8vec16 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;
R8 = A4;
R9 = B4;
R10 = A5;
R11 = B5;
R12 = A6;
R13 = B6;
R14 = A7;
R15 = B7;

Corresponding intrinsic: _mm_unpacklo_epi8

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half
of B.

I8vec8 unpack_low(I8vec8 A, I8vec8 B);
Is8vec8 unpack_low(Is8vec8 A, Is8vec8 B);
Iu8vec8 unpack_low(Iu8vec8 A, Iu8vec8 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _mm_unpacklo_pi8

Pack Operators
Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

Is16vec8 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_epi32

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

Is16vec4 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_pi32

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

Is8vec16 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_epi16

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

Is8vec8 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pi16

Intel® C++ Intrinsics Reference

361

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

Iu8vec16 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packus_epi16

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

Iu8vec8 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pu16

Clear MMX(TM) Instructions State Operator
Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the
EMMS instruction intrinsic.

void empty(void);
Corresponding intrinsic: _mm_empty

Integer Intrinsics for Streaming SIMD Extensions
 Note

You must include fvec.h header file for the following functionality.

Compute the element-wise maximum of the respective signed integer words in A and B.

Is16vec4 simd_max(Is16vec4 A, Is16vec4 B);
Corresponding intrinsic: _mm_max_pi16

Compute the element-wise minimum of the respective signed integer words in A and B.

Is16vec4 simd_min(Is16vec4 A, Is16vec4 B);
Corresponding intrinsic: _mm_min_pi16

Compute the element-wise maximum of the respective unsigned bytes in A and B.

Iu8vec8 simd_max(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_max_pu8

Compute the element-wise minimum of the respective unsigned bytes in A and B.

Iu8vec8 simd_min(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_min_pu8

Create an 8-bit mask from the most significant bits of the bytes in A.

int move_mask(I8vec8 A);
Corresponding intrinsic: _mm_movemask_pi8

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B
determines whether the corresponding byte in A will be stored.

void mask_move(I8vec8 A, I8vec8 B, signed char *p);
Corresponding intrinsic: _mm_maskmove_si64

Store the data in A to the address p without polluting the caches. A can be any Ivec type.

void store_nta(__m64 *p, M64 A);
Corresponding intrinsic: _mm_stream_pi

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

Iu8vec8 simd_avg(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_avg_pu8

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

Iu16vec4 simd_avg(Iu16vec4 A, Iu16vec4 B);
Corresponding intrinsic: _mm_avg_pu16

362

Conversions Between Fvec and Ivec
Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

int F64vec2ToInt(F64vec42 A);
r := (int)A0;

Convert the four floating-point values of A to two the two least significant double-precision
floating-point values.

F64vec2 F32vec4ToF64vec2(F32vec4 A);
r0 := (double)A0;
r1 := (double)A1;

Convert the two double-precision floating-point values of A to two single-precision floating-point
values.

F32vec4 F64vec2ToF32vec4(F64vec2 A);
r0 := (float)A0;
r1 := (float)A1;

Convert the signed int in B to a double-precision floating-point value and pass the upper double-
precision value from A through to the result.

F64vec2 InttoF64vec2(F64vec2 A, int B);
r0 := (double)B;
r1 := A1;

Convert the lower floating-point value of A to a 32-bit integer with truncation.

int F32vec4ToInt(F32vec4 A);
r := (int)A0;

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning
the integers in packed form.

Is32vec2 F32vec4ToIs32vec2 (F32vec4 A);
r0 := (int)A0;
r1 := (int)A1;

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values
are passed through from A.

F32vec4 IntToF32vec4(F32vec4 A, int B);
r0 := (float)B;
r1 := A1;
r2 := A2;
r3 := A3;

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper
two floating-point values are passed through from A.

F32vec4 Is32vec2ToF32vec4(F32vec4 A, Is32vec2 B);
r0 := (float)B0;
r1 := (float)B1;
r2 := A2;
r3 := A3;

Intel® C++ Intrinsics Reference

363

Floating-point Vector Classes
The floating-point vector classes, F64vec2, F32vec4, and F32vec1, provide an interface to
SIMD operations. The class specifications are as follows:

F64vec2 A(double x, double y);
F32vec4 A(float z, float y, float x, float w);
F32vec1 B(float w);

The packed floating-point input values are represented with the right-most value lowest as shown
in the following table.

Single-Precision Floating-point Elements

Fvec Notation Conventions
This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation

Fvec classes use the syntax conventions shown the following examples:

[Fvec_Class] R = [Fvec_Class] A [operator][Ivec_Class] B;

Example 1: F64vec2 R = F64vec2 A & F64vec2 B;
[Fvec_Class] R = [operator]([Fvec_Class] A,[Fvec_Class] B);

Example 2: F64vec2 R = andnot(F64vec2 A, F64vec2 B);
[Fvec_Class] R [operator]= [Fvec_Class] A;

Example 3: F64vec2 R &= F64vec2 A;

where

[operator] is an operator (for example, &, |, or ^)

[Fvec_Class] is any Fvec class (F64vec2, F32vec4, or F32vec1)

R, A, B are declared Fvec variables of the type indicated

364

Return Value Notation
Because the Fvec classes have packed elements, the return values typically follow the
conventions presented in the Return Value Convention Notation Mappings table below. F32vec4
returns four single-precision, floating-point values (R0, R1, R2, and R3); F64vec2 returns two
double-precision, floating-point values, and F32vec1 returns the lowest single-precision
floating-point value (R0).

Return Value Convention Notation Mappings

Example 1: Example 2: Example
3:

F32vec4 F64vec2 F32vec1

R0 := A0 &
B0;

R0 := A0 andnot
B0;

R0 &=
A0;

x x x

R1 := A1 &
B1;

R1 := A1 andnot
B1;

R1 &=
A1;

x x N/A

R2 := A2 &
B2;

R2 := A2 andnot
B2;

R2 &=
A2;

x N/A N/A

R3 := A3 &
B3

R3 := A3 andhot
B3;

R3 &=
A3;

x N/A N/A

Data Alignment
Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-
aligned data whenever possible.

F32vec4 and F64vec2 object variables are properly aligned by default. Note that floating point
arrays are not automatically aligned. To get 16-byte alignment, you can use the alignment
__declspec:

__declspec(align(16)) float A[4];

Conversions
All Fvec object variables can be implicitly converted to __m128 data types. For example, the
results of computations performed on F32vec4 or F32vec1 object variables can be assigned to
__m128 data types.

__m128d mm = A & B; /* where A,B are F64vec2 object variables */
__m128 mm = A & B; /* where A,B are F32vec4 object variables */
__m128 mm = A & B; /* where A,B are F32vec1 object variables */

Intel® C++ Intrinsics Reference

365

Constructors and Initialization
The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A;
F32vec4 B;
F32vec1 C;

N/A N/A

__m128 Object Initialization

F64vec2 A(__m128d mm);
F32vec4 B(__m128 mm);
F32vec1 C(__m128 mm);

N/A N/A

Double Initialization

/* Initializes two doubles. */
F64vec2 A(double d0, double d1);
F64vec2 A = F64vec2(double d0, double
d1);

_mm_set_pd A0 := d0;
A1 := d1;

F64vec2 A(double d0);
/* Initializes both return values
with the same double precision value */.

_mm_set1_pd A0 := d0;
A1 := d0;

Float Initialization

F32vec4 A(float f3, float f2,
float f1, float f0);
F32vec4 A = F32vec4(float f3, float f2,
float f1, float f0);

_mm_set_ps A0 := f0;
A1 := f1;
A2 := f2;
A3 := f3;

F32vec4 A(float f0);
/* Initializes all return values
with the same floating point value. */

_mm_set1_ps A0 := f0;
A1 := f0;
A2 := f0;
A3 := f0;

F32vec4 A(double d0);
/* Initialize all return values with
the same double-precision value. */

_mm_set1_ps(d) A0 := d0;
A1 := d0;
A2 := d0;
A3 := d0;

F32vec1 A(double d0);
/* Initializes the lowest value of A
with d0 and the other values with 0.*/

_mm_set_ss(d) A0 := d0;
A1 := 0;
A2 := 0;
A3 := 0;

366

F32vec1 B(float f0);
/* Initializes the lowest value of B
with f0 and the other values with 0.*/

_mm_set_ss B0 := f0;
B1 := 0;
B2 := 0;
B3 := 0;

F32vec1 B(int I);
/* Initializes the lowest value of B
with f0, other values are undefined.*/

_mm_cvtsi32_ss B0 := f0;
B1 := {}
B2 := {}
B3 := {}

Arithmetic Operators
The following table lists the arithmetic operators of the Fvec classes and generic syntax. The
operators have been divided into standard and advanced operations, which are described in more
detail later in this section.

Fvec Arithmetic Operators

Category Operation Operators Generic Syntax

Standard Addition +
+=

R = A + B;
R += A;

 Subtraction -
-=

R = A - B;
R -= A;

 Multiplication *
*=

R = A * B;
R *= A;

 Division /
/=

R = A / B;
R /= A;

Advanced Square Root sqrt R = sqrt(A);

 Reciprocal
(Newton-Raphson)

rcp
rcp_nr

R = rcp(A);
R = rcp_nr(A);

 Reciprocal Square Root
(Newton-Raphson)

rsqrt
rsqrt_nr

R = rsqrt(A);
R = rsqrt_nr(A);

Intel® C++ Intrinsics Reference

367

Standard Arithmetic Operator Usage
The following two tables show the return values for each class of the standard arithmetic
operators, which use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A Operators B F32vec4 F64vec2 F32vec1

R0:= A0 + - * / B0

R1:= A1 + - * / B1 N/A

R2:= A2 + - * / B2 N/A N/A

R3:= A3 + - * / B3 N/A N/A

Arithmetic with Assignment Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= += -= *= /= A0

R1:= += -= *= /= A1 N/A

R2:= += -= *= /= A2 N/A N/A

R3:= += -= *= /= A3 N/A N/A

The table below lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns Example Syntax Usage Intrinsic

Addition 4 floats F32vec4 R = F32vec4 A + F32vec4
B;
F32vec4 R += F32vec4 A;

_mm_add_ps

 2
doubles

F64vec2 R = F64vec2 A + F32vec2
B;
F64vec2 R += F64vec2 A;

_mm_add_pd

 1 float F32vec1 R = F32vec1 A + F32vec1
B;
F32vec1 R += F32vec1 A;

_mm_add_ss

Subtraction 4 floats F32vec4 R = F32vec4 A - F32vec4
B;
F32vec4 R -= F32vec4 A;

_mm_sub_ps

368

Operation Returns Example Syntax Usage Intrinsic

 2
doubles

F64vec2 R - F64vec2 A + F32vec2
B;
F64vec2 R -= F64vec2 A;

_mm_sub_pd

 1 float F32vec1 R = F32vec1 A - F32vec1
B;
F32vec1 R -= F32vec1 A;

_mm_sub_ss

Multiplication 4 floats F32vec4 R = F32vec4 A * F32vec4
B;
F32vec4 R *= F32vec4 A;

_mm_mul_ps

 2
doubles

F64vec2 R = F64vec2 A * F364vec2
B;
F64vec2 R *= F64vec2 A;

_mm_mul_pd

 1 float F32vec1 R = F32vec1 A * F32vec1
B;
F32vec1 R *= F32vec1 A;

_mm_mul_ss

Division 4 floats F32vec4 R = F32vec4 A / F32vec4
B;
F32vec4 R /= F32vec4 A;

_mm_div_ps

 2
doubles

F64vec2 R = F64vec2 A / F64vec2
B;
F64vec2 R /= F64vec2 A;

_mm_div_pd

 1 float F32vec1 R = F32vec1 A / F32vec1
B;
F32vec1 R /= F32vec1 A;

_mm_div_ss

Advanced Arithmetic Operator Usage
The following table shows the return values classes of the advanced arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= sqrt rcp rsqrt rcp_nr rsqrt_nr A0

R1:= sqrt rcp rsqrt rcp_nr rsqrt_nr A1 N/A

R2:= sqrt rcp rsqrt rcp_nr rsqrt_nr A2 N/A N/A

R3:= sqrt rcp rsqrt rcp_nr rsqrt_nr A3 N/A N/A

f := add_horizontal (A0 +
A1 + A2
+ A3)

 N/A N/A

Intel® C++ Intrinsics Reference

369

R Operators A F32vec4 F64vec2 F32vec1

d := add_horizontal (A0 +
A1)

 N/A N/A

The table below shows examples for advanced arithmetic operators.

Advanced Arithmetic Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vec4 A); _mm_sqrt_ps

2 doubles F64vec2 R = sqrt(F64vec2 A); _mm_sqrt_pd

1 float F32vec1 R = sqrt(F32vec1 A); _mm_sqrt_ss

Reciprocal

4 floats F32vec4 R = rcp(F32vec4 A); _mm_rcp_ps

2 doubles F64vec2 R = rcp(F64vec2 A); _mm_rcp_pd

1 float F32vec1 R = rcp(F32vec1 A); _mm_rcp_ss

Reciprocal Square Root

4 floats F32vec4 R = rsqrt(F32vec4 A); _mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt(F64vec2 A); _mm_rsqrt_pd

1 float F32vec1 R = rsqrt(F32vec1 A); _mm_rsqrt_ss

Reciprocal Newton Raphson

4 floats F32vec4 R = rcp_nr(F32vec4 A); _mm_sub_ps
_mm_add_ps
_mm_mul_ps
_mm_rcp_ps

2 doubles F64vec2 R = rcp_nr(F64vec2 A); _mm_sub_pd
_mm_add_pd
_mm_mul_pd
_mm_rcp_pd

1 float F32vec1 R = rcp_nr(F32vec1 A); _mm_sub_ss
_mm_add_ss
_mm_mul_ss

370

_mm_rcp_ss

Reciprocal Square Root Newton Raphson

4 float F32vec4 R = rsqrt_nr(F32vec4 A); _mm_sub_pd
_mm_mul_pd
_mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt_nr(F64vec2 A); _mm_sub_pd
_mm_mul_pd
_mm_rsqrt_pd

1 float F32vec1 R = rsqrt_nr(F32vec1 A); _mm_sub_ss
_mm_mul_ss
_mm_rsqrt_ss

Horizontal Add

1 float float f = add_horizontal(F32vec4 A); _mm_add_ss
_mm_shuffle_ss

1 double double d = add_horizontal(F64vec2 A); _mm_add_sd
_mm_shuffle_sd

Minimum and Maximum Operators
Compute the minimums of the two double precision floating-point values of A and B.

F64vec2 R = simd_min(F64vec2 A, F64vec2 B)
R0 := min(A0,B0);
R1 := min(A1,B1);
Corresponding intrinsic: _mm_min_pd

Compute the minimums of the four single precision floating-point values of A and B.

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)
R0 := min(A0,B0);
R1 := min(A1,B1);
R2 := min(A2,B2);
R3 := min(A3,B3);
Corresponding intrinsic: _mm_min_ps

Compute the minimum of the lowest single precision floating-point values of A and B.

F32vec1 R = simd_min(F32vec1 A, F32vec1 B)
R0 := min(A0,B0);
Corresponding intrinsic: _mm_min_ss

Compute the maximums of the two double precision floating-point values of A and B.

F64vec2 simd_max(F64vec2 A, F64vec2 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
Corresponding intrinsic: _mm_max_pd

Intel® C++ Intrinsics Reference

371

Compute the maximums of the four single precision floating-point values of A and B.

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
R2 := max(A2,B2);
R3 := max(A3,B3);
Corresponding intrinsic: _mm_max_ps

Compute the maximum of the lowest single precision floating-point values of A and B.

F32vec1 simd_max(F32vec1 A, F32vec1 B)
R0 := max(A0,B0);
Corresponding intrinsic: _mm_max_ss

Logical Operators
The table below lists the logical operators of the Fvec classes and generic syntax. The logical
operators for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation Operators Generic Syntax

AND &
&=

R = A & B;
R &= A;

OR |
|=

R = A | B;
R |= A;

XOR ^
^=

R = A ^ B;
R ^= A;

andnot andnot R = andnot(A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that
there is no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32
bits of the packed vector intrinsics.

Logical Operations for Fvec Classes

Operation Returns Example Syntax Usage Intrinsic

AND 4 floats F32vec4 & = F32vec4 A & F32vec4
B;
F32vec4 & &= F32vec4 A;

_mm_and_ps

 2
doubles

F64vec2 R = F64vec2 A & F32vec2
B;
F64vec2 R &= F64vec2 A;

_mm_and_pd

 1 float F32vec1 R = F32vec1 A & F32vec1
B;
F32vec1 R &= F32vec1 A;

_mm_and_ps

372

Operation Returns Example Syntax Usage Intrinsic

OR 4 floats F32vec4 R = F32vec4 A | F32vec4
B;
F32vec4 R |= F32vec4 A;

_mm_or_ps

 2
doubles

F64vec2 R = F64vec2 A | F32vec2
B;
F64vec2 R |= F64vec2 A;

_mm_or_pd

 1 float F32vec1 R = F32vec1 A | F32vec1
B;
F32vec1 R |= F32vec1 A;

_mm_or_ps

XOR 4 floats F32vec4 R = F32vec4 A ^ F32vec4
B;
F32vec4 R ^= F32vec4 A;

_mm_xor_ps

 2
doubles

F64vec2 R = F64vec2 A ^
F364vec2 B;
F64vec2 R ^= F64vec2 A;

_mm_xor_pd

 1 float F32vec1 R = F32vec1 A ^ F32vec1
B;
F32vec1 R ^= F32vec1 A;

_mm_xor_ps

ANDNOT 2
doubles

F64vec2 R = andnot(F64vec2 A,
F64vec2 B);

_mm_andnot_pd

Compare Operators
The operators described in this section compare the single precision floating-point values of A and
B. Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators Syntax

Equality cmpeq R = cmpeq(A, B)

Inequality cmpneq R = cmpneq(A, B)

Greater Than cmpgt R = cmpgt(A, B)

Greater Than or Equal To cmpge R = cmpge(A, B)

Not Greater Than cmpngt R = cmpngt(A, B)

Not Greater Than or Equal To cmpnge R = cmpnge(A, B)

Intel® C++ Intrinsics Reference

373

Compare For: Operators Syntax

Less Than cmplt R = cmplt(A, B)

Less Than or Equal To cmple R = cmple(A, B)

Not Less Than cmpnlt R = cmpnlt(A, B)

Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators
The mask is set to 0xffffffff for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The table below shows the return values for each
class of the compare operators, which use the syntax described earlier in the Return Value
Notation section.

Compare Operator Return Value Mapping

R A0 For Any
Operators

B If True If False F32vec4 F64vec2 F32vec1

R0:= (A1
!(A1

cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B1)
B1)

0xffffffff 0x0000000 X X X

R1:= (A1
!(A1

cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B2)
B2)

0xffffffff 0x0000000

X X N/A

R2:= (A1
!(A1

cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B3)
B3)

0xffffffff 0x0000000

X N/A N/A

374

R A0 For Any
Operators

B If True If False F32vec4 F64vec2 F32vec1

R3:= A3 cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B3)
B3)

0xffffffff 0x0000000

X N/A N/A

The table below shows examples for arithmetic operators and intrinsics.

Compare Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = cmpeq(F32vec4 A); _mm_cmpeq_ps

2 doubles F64vec2 R = cmpeq(F64vec2 A); _mm_cmpeq_pd

1 float F32vec1 R = cmpeq(F32vec1 A); _mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R = cmpneq(F32vec4 A); _mm_cmpneq_ps

2 doubles F64vec2 R = cmpneq(F64vec2 A); _mm_cmpneq_pd

1 float F32vec1 R = cmpneq(F32vec1 A); _mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R = cmplt(F32vec4 A); _mm_cmplt_ps

2 doubles F64vec2 R = cmplt(F64vec2 A); _mm_cmplt_pd

1 float F32vec1 R = cmplt(F32vec1 A); _mm_cmplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = cmple(F32vec4 A); _mm_cmple_ps

2 doubles F64vec2 R = cmple(F64vec2 A); _mm_cmple_pd

Intel® C++ Intrinsics Reference

375

1 float F32vec1 R = cmple(F32vec1 A); _mm_cmple_pd

Compare for Greater Than

4 floats F32vec4 R = cmpgt(F32vec4 A); _mm_cmpgt_ps

2 doubles F64vec2 R = cmpgt(F32vec42 A); _mm_cmpgt_pd

1 float F32vec1 R = cmpgt(F32vec1 A); _mm_cmpgt_ss

Compare for Greater Than or Equal To

4 floats F32vec4 R = cmpge(F32vec4 A); _mm_cmpge_ps

2 doubles F64vec2 R = cmpge(F64vec2 A); _mm_cmpge_pd

1 float F32vec1 R = cmpge(F32vec1 A); _mm_cmpge_ss

Compare for Not Less Than

4 floats F32vec4 R = cmpnlt(F32vec4 A); _mm_cmpnlt_ps

2 doubles F64vec2 R = cmpnlt(F64vec2 A); _mm_cmpnlt_pd

1 float F32vec1 R = cmpnlt(F32vec1 A); _mm_cmpnlt_ss

Compare for Not Less Than or Equal

4 floats F32vec4 R = cmpnle(F32vec4 A); _mm_cmpnle_ps

2 doubles F64vec2 R = cmpnle(F64vec2 A); _mm_cmpnle_pd

1 float F32vec1 R = cmpnle(F32vec1 A); _mm_cmpnle_ss

Compare for Not Greater Than

4 floats F32vec4 R = cmpngt(F32vec4 A); _mm_cmpngt_ps

2 doubles F64vec2 R = cmpngt(F64vec2 A); _mm_cmpngt_pd

1 float F32vec1 R = cmpngt(F32vec1 A); _mm_cmpngt_ss

Compare for Not Greater Than or Equal

4 floats F32vec4 R = cmpnge(F32vec4 A); _mm_cmpnge_ps

2 doubles F64vec2 R = cmpnge(F64vec2 A); _mm_cmpnge_pd

376

1 float F32vec1 R = cmpnge(F32vec1 A); _mm_cmpnge_ss

Conditional Select Operators for Fvec Classes
Each conditional function compares single-precision floating-point values of A and B. The C and
D parameters are used for return value. Comparison between objects of any Fvec class returns the
same class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq R = select_eq(A, B)

Inequality select_neq R = select_neq(A, B)

Greater Than select_gt R = select_gt(A, B)

Greater Than or Equal To select_ge R = select_ge(A, B)

Not Greater Than select_gt R = select_gt(A, B)

Not Greater Than or Equal To select_ge R = select_ge(A, B)

Less Than select_lt R = select_lt(A, B)

Less Than or Equal To select_le R = select_le(A, B)

Not Less Than select_nlt R = select_nlt(A, B)

Not Less Than or Equal To select_nle R = select_nle(A, B)

Conditional Select Operator Usage
For conditional select operators, the return value is stored in C if the comparison is true or in D if
false. The following table shows the return values for each class of the conditional select
operators, using the Return Value Notation described earlier.

Compare Operator Return Value Mapping

R A0 Operators B C D F32vec4 F64vec2 F32vec1

R0:= (A1
!(A1

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B0)
B0)

C0
C0

D0
D0

X X X

R1:= (A2
!(A2

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B1)
B1)

C1
C1

D1
D1

X X N/A

Intel® C++ Intrinsics Reference

377

R A0 Operators B C D F32vec4 F64vec2 F32vec1

R2:= (A2
!(A2

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B2)
B2)

C2
C2

D2
D2

X N/A N/A

R3:= (A3
!(A3

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B3)
B3)

C3
C3

D3
D3

X N/A N/A

The following table shows examples for conditional select operations and corresponding
intrinsics.

Conditional Select Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = select_eq(F32vec4 A); _mm_cmpeq_ps

2 doubles F64vec2 R = select_eq(F64vec2 A); _mm_cmpeq_pd

1 float F32vec1 R = select_eq(F32vec1 A); _mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R = select_neq(F32vec4 A); _mm_cmpneq_ps

2 doubles F64vec2 R = select_neq(F64vec2 A); _mm_cmpneq_pd

1 float F32vec1 R = select_neq(F32vec1 A); _mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R = select_lt(F32vec4 A); _mm_cmplt_ps

2 doubles F64vec2 R = select_lt(F64vec2 A); _mm_cmplt_pd

1 float F32vec1 R = select_lt(F32vec1 A); _mm_cmplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = select_le(F32vec4 A); _mm_cmple_ps

2 doubles F64vec2 R = select_le(F64vec2 A); _mm_cmple_pd

378

1 float F32vec1 R = select_le(F32vec1 A); _mm_cmple_ps

Compare for Greater Than

4 floats F32vec4 R = select_gt(F32vec4 A); _mm_cmpgt_ps

2 doubles F64vec2 R = select_gt(F64vec2 A); _mm_cmpgt_pd

1 float F32vec1 R = select_gt(F32vec1 A); _mm_cmpgt_ss

Compare for Greater Than or Equal To

4 floats F32vec1 R = select_ge(F32vec4 A); _mm_cmpge_ps

2 doubles F64vec2 R = select_ge(F64vec2 A); _mm_cmpge_pd

1 float F32vec1 R = select_ge(F32vec1 A); _mm_cmpge_ss

Compare for Not Less Than

4 floats F32vec1 R = select_nlt(F32vec4 A); _mm_cmpnlt_ps

2 doubles F64vec2 R = select_nlt(F64vec2 A); _mm_cmpnlt_pd

1 float F32vec1 R = select_nlt(F32vec1 A); _mm_cmpnlt_ss

Compare for Not Less Than or Equal

4 floats F32vec1 R = select_nle(F32vec4 A); _mm_cmpnle_ps

2 doubles F64vec2 R = select_nle(F64vec2 A); _mm_cmpnle_pd

1 float F32vec1 R = select_nle(F32vec1 A); _mm_cmpnle_ss

Compare for Not Greater Than

4 floats F32vec1 R = select_ngt(F32vec4 A); _mm_cmpngt_ps

2 doubles F64vec2 R = select_ngt(F64vec2 A); _mm_cmpngt_pd

1 float F32vec1 R = select_ngt(F32vec1 A); _mm_cmpngt_ss

Compare for Not Greater Than or Equal

4 floats F32vec1 R = select_nge(F32vec4 A); _mm_cmpnge_ps

2 doubles F64vec2 R = select_nge(F64vec2 A); _mm_cmpnge_pd

Intel® C++ Intrinsics Reference

379

1 float F32vec1 R = select_nge(F32vec1 A); _mm_cmpnge_ss

Cacheability Support Operations
Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte
aligned address.

void store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _mm_stream_pd

Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte
aligned address.

void store_nta(float *p, F32vec4 A);
Corresponding intrinsic: _mm_stream_ps

Debugging
The debug operations do not map to any compiler intrinsics for MMX(TM) technology or
Streaming SIMD Extensions. They are provided for debugging programs only. Use of these
operations may result in loss of performance, so you should not use them outside of debugging.

Output Operations
The two single, double-precision floating-point values of A are placed in the output buffer and
printed in decimal format as follows:

cout << F64vec2 A;
"[1]:A1 [0]:A0"
Corresponding intrinsics: none

The four, single-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F32vec4 A;
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding intrinsics: none

The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vec1 A;
Corresponding intrinsics: none

Element Access Operations
double d = F64vec2 A[int i]

Read one of the two, double-precision floating-point values of A without modifying the
corresponding floating-point value. Permitted values of i are 0 and 1. For example:

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is
printed and the program aborts.

double d = F64vec2 A[1];
Corresponding intrinsics: none

Read one of the four, single-precision floating-point values of A without modifying the
corresponding floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 A[int i]

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is
printed and the program aborts.

float f = F32vec4 A[2];
Corresponding intrinsics: none

380

Element Assignment Operations
F64vec4 A[int i] = double d;

Modify one of the two, double-precision floating-point values of A. Permitted values of int i
are 0 and 1. For example:

F32vec4 A[1] = double d;
F32vec4 A[int i] = float f;

Modify one of the four, single-precision floating-point values of A. Permitted values of int i are
0, 1, 2, and 3. For example:

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is
printed and the program aborts.

F32vec4 A[3] = float f;
Corresponding intrinsics: none.

Load and Store Operators
Loads two, double-precision floating-point values, copying them into the two, floating-point
values of A. No assumption is made for alignment.

void loadu(F64vec2 A, double *p)
Corresponding intrinsic: _mm_loadu_pd

Stores the two, double-precision floating-point values of A. No
assumption is made for alignment.
void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _mm_storeu_pd

Loads four, single-precision floating-point values, copying them
into the four floating-point values of A. No assumption is made
for alignment.
void loadu(F32vec4 A, double *p)
Corresponding intrinsic: _mm_loadu_ps

Stores the four, single-precision floating-point values of A. No
assumption is made for alignment.
void storeu(float *p, F32vec4 A);
Corresponding intrinsic: _mm_storeu_ps

Unpack Operators for Fvec Operators
Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_low(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpacklo_pd(a, b)

Selects and interleaves the higher, double-precision floating-point values from A and B.

F64vec2 R = unpack_high(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpackhi_pd(a, b)

Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_low(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm_unpacklo_ps(a, b)

Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_high(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm_unpackhi_ps(a, b)

Intel® C++ Intrinsics Reference

381

Move Mask Operator
Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point
values of A, as follows:

int i = move_mask(F64vec2 A)
i := sign(a1)<<1 | sign(a0)<<0
Corresponding intrinsic: _mm_movemask_pd

Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point
values of A, as follows:

int i = move_mask(F32vec4 A)
i := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)<<0
Corresponding intrinsic: _mm_movemask_ps

Classes Quick Reference
This appendix contains tables listing the class, functionality, and corresponding intrinsics for each
class in the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel
C++ Compiler intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

I128vec1,
I64vec2,
I32vec4,
I16vec8,
I8vec16

I64vec,
I32vec,
I16vec,
I8vec8

F64vec2 F32vec4 F32vec1

&, &= _mm_and_[x] si128 si64 pd ps ps

|, |= _mm_or_[x] si128 si64 pd ps ps

^, ^= _mm_xor_[x] si128 si64 pd ps ps

Andnot _mm_andnot_[x] si128 si64 pd N/A N/A

Arithmetic: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I64vec2 I32vec4 I16vec8 I8vec16

+, += _mm_add_[x] epi64 epi32 epi16 epi8

-, -= _mm_sub_[x] epi64 epi32 epi16 epi8

*, *= _mm_mullo_[x] N/A N/A epi16 N/A

/, /= _mm_div_[x] N/A N/A N/A N/A

mul_high _mm_mulhi_[x] N/A N/A epi16 N/A

mul_add _mm_madd_[x] N/A N/A epi16 N/A

382

Operators Corresponding
Intrinsic

I64vec2 I32vec4 I16vec8 I8vec16

sqrt _mm_sqrt_[x] N/A N/A N/A N/A

rcp _mm_rcp_[x] N/A N/A N/A N/A

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

rsqrt _mm_rsqrt_[x] N/A N/A N/A N/A

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

Arithmetic: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

I32vec2 I16vec4 I8vec8 F64vec2 F32vec4 F32vec1

+, += _mm_add_[x] pi32 pi16 pi8 pd ps ss

-, -= _mm_sub_[x] pi32 pi16 pi8 pd ps ss

*, *= _mm_mullo_[x] N/A pi16 N/A pd ps ss

/, /= _mm_div_[x] N/A N/A N/A pd ps ss

mul_high _mm_mulhi_[x] N/A pi16 N/A N/A N/A N/A

mul_add _mm_madd_[x] N/A pi16 N/A N/A N/A N/A

sqrt _mm_sqrt_[x] N/A N/A N/A pd ps ss

rcp _mm_rcp_[x] N/A N/A N/A pd ps ss

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

rsqrt _mm_rsqrt_[x] N/A N/A N/A pd ps ss

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

Intel® C++ Intrinsics Reference

383

Shift Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I128vec1 I64vec2 I32vec4 I16vec8 I8vec16

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

N/A
N/A
N/A
N/A

epi64
epi64
N/A
N/A

epi32
epi32
epi32
epi32

epi16
epi16
epi16
epi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

N/A
N/A

epi64
epi64

epi32
epi32

epi16
epi16

N/A
N/A

Shift Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

I64vec1 I32vec2 I16vec4 I8vec8

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

si64
si64
N/A
N/A

pi32
pi32
pi32
pi32

pi16
pi16
pi16
pi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

si64
si64

pi32
pi32

pi16
pi16

N/A
N/A

384

Comparison Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I32vec4 I16vec8 I8vec16 I32vec2 I16vec4 I8vec8

cmpeq _mm_cmpeq_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpgt _mm_cmpgt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmplt _mm_cmplt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmple _mm_cmple_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpngt _mm_cmpngt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpnge _mm_cmpnge_[x] N/A N/A N/A N/A N/A N/A

cmnpnlt _mm_cmpnlt_[x] N/A N/A N/A N/A N/A N/A

cmpnle _mm_cmpnle_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Comparison Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

F64vec2 F32vec4 F32vec1

cmpeq _mm_cmpeq_[x] pd ps ss

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

pd ps ss

cmpgt _mm_cmpgt_[x] pd ps ss

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

pd ps ss

cmplt _mm_cmplt_[x] pd ps ss

cmple _mm_cmple_[x]
_mm_andnot_[y]*

pd ps ss

cmpngt _mm_cmpngt_[x] pd ps ss

cmpnge _mm_cmpnge_[x] pd ps ss

Intel® C++ Intrinsics Reference

385

Operators Corresponding
Intrinsic

F64vec2 F32vec4 F32vec1

cmnpnlt _mm_cmpnlt_[x] pd ps ss

cmpnle _mm_cmpnle_[x] pd ps ss

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I32vec4 I16vec8 I8vec16 I32vec2 I16vec4 I8vec8

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ngt _mm_cmpgt_[x] N/A N/A N/A N/A N/A N/A

select_nge _mm_cmpge_[x] N/A N/A N/A N/A N/A N/A

select_nlt _mm_cmplt_[x] N/A N/A N/A N/A N/A N/A

select_nle _mm_cmple_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

386

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

F64vec2 F32vec4 F32vec1

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ngt _mm_cmpgt_[x] pd ps ss

select_nge _mm_cmpge_[x] pd ps ss

select_nlt _mm_cmplt_[x] pd ps ss

select_nle _mm_cmple_[x] pd ps ss

Intel® C++ Intrinsics Reference

387

Packing and Unpacking Operators: Corresponding Intrinsics and Classes,
Part 1

Operators Corresponding
Intrinsic

I64vec2 I32vec4 I16vec8 I8vec16 I32vec2

unpack_high _mm_unpackhi_[x] epi64 epi32 epi16 epi8 pi32

unpack_low _mm_unpacklo_[x] epi64 epi32 epi16 epi8 pi32

pack_sat _mm_packs_[x] N/A epi32 epi16 N/A pi32

packu_sat _mm_packus_[x] N/A N/A epi16 N/A N/A

sat_add _mm_adds_[x] N/A N/A epi16 epi8 N/A

sat_sub _mm_subs_[x] N/A N/A epi16 epi8 N/A

Packing and Unpacking Operators: Corresponding Intrinsics and Classes,
Part 2

Operators Corresponding
Intrinsic

I16vec4 I8vec8 F64vec2 F32vec4 F32vec1

unpack_high _mm_unpackhi_[x] pi16 pi8 pd ps N/A

unpack_low _mm_unpacklo_[x] pi16 pi8 pd ps N/A

pack_sat _mm_packs_[x] pi16 N/A N/A N/A N/A

packu_sat _mm_packus_[x] pu16 N/A N/A N/A N/A

sat_add _mm_adds_[x] pi16 pi8 pd ps ss

sat_sub _mm_subs_[x] pi16 pi8 pi16 pi8 pd

388

Conversions Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

F64vec2ToInt _mm_cvttsd_si32

F32vec4ToF64vec2 _mm_cvtps_pd

F64vec2ToF32vec4 _mm_cvtpd_ps

IntToF64vec2 _mm_cvtsi32_sd

F32vec4ToInt _mm_cvtt_ss2si

F32vec4ToIs32vec2 _mm_cvttps_pi32

IntToF32vec4 _mm_cvtsi32_ss

Is32vec2ToF32vec4 _mm_cvtpi32_ps

Intel® C++ Intrinsics Reference

389

Programming Example
This sample program uses the F32vec4 class to average the elements of a 20 element floating
point array.

// Include Streaming SIMD Extension Class Definitions
#include <fvec.h>

// Shuffle any 2 single precision floating point from a
// into low 2 SP FP and shuffle any 2 SP FP from b
// into high 2 SP FP of destination
#define SHUFFLE(a,b,i) (F32vec4)_mm_shuffle_ps(a,b,i)
#include <stdio.h>
#define SIZE 20

// Global variables
float result;
_MM_ALIGN 16 float array[SIZE];

//***
// Function: Add20ArrayElements
// Add all the elements of a 20 element array
//***

void Add20ArrayElements (F32vec4 *array, float *result)
{
 F32vec4 vec0, vec1;
 vec0 = _mm_load_ps ((float *) array); // Load array's first
4 floats

 //***
 // Add all elements of the array, 4 elements at a time
 //**

 vec0 += array[1]; // Add elements 5-8
 vec0 += array[2]; // Add elements 9-12
 vec0 += array[3]; // Add elements 13-16
 vec0 += array[4]; // Add elements 17-20

 //***
 // There are now 4 partial sums.
 // Add the 2 lowers to the 2 raises,
 // then add those 2 results together
 //***

 vec1 = SHUFFLE(vec1, vec0, 0x40);
 vec0 += vec1;
 vec1 = SHUFFLE(vec1, vec0, 0x30);
 vec0 += vec1;
 vec0 = SHUFFLE(vec0, vec0, 2);
 _mm_store_ss (result, vec0); // Store the final sum
}

void main(int argc, char *argv[])
{
 int i;
 // Initialize the array
 for (i=0; i < SIZE; i++)
 {
 array[i] = (float) i;
 }

 // Call function to add all array elements

390

 Add20ArrayElements (array, &result);

 // Print average array element value
 printf ("Average of all array values = %f\n", result/20.);
 printf ("The correct answer is %f\n\n\n", 9.5);
}

Intel® C++ Intrinsics Reference

391

Index
#assert...44

#define ..44

#pragma distribute point.................................155

#pragma hdrstop ...55

#pragma ivdep117, 125, 157

#pragma loop count ..155

#pragma noprefetch ..156

#pragma noswp...154

#pragma nounroll ...156

#pragma novector125, 157

#pragma omp..................................137, 140, 147

#pragma optimize ...80

#pragma prefetch ..156

#pragma swp...154

#pragma taskq...150, 153

#pragma unroll ...156

#pragma vector125, 157

#undef...44

-[no]align option...11

-[no]restrict option..11

__GNUC__ predefined macro..........................71

__GNUC_MINOR__ predefined macro...........71

__GNUC_PATCHLEVEL__ predefined macro
..71

__STDC__ macro...76

__TIME__ macro ...76

-A- option ...11

acos library function176

acosd library function176

acosh library function179

-alias_args[-] option..11

-align option ...60

alignment ..54

alternate tools and paths53

-Aname[(value)] option11

annuity library function 184

-ansi option ...11, 76

ANSI/ISO standard.. 76

-ansi_alias[-] option....................................11, 76

arrays ... 125

asin library function....................................... 176

asind library function..................................... 176

asinh library function..................................... 179

atan library function....................................... 176

atan2 library function..................................... 176

atand library function..................................... 176

atand2 library function................................... 176

atanh library function..................................... 179

-auto_ilp32 option.. 11

-ax option..11, 86, 119

bash_profile ... 40

built-in functions.. 74

-C option.. 11

C_INCLUDE_PATH enviroment variable...... 48

-c99[-] option... 11

cabs library function 193

cacos library function 193

cacosh library function 193

captureprivate .. 150

carg library function 193

casin library function 193

casinh library function 193

catan library function..................................... 193

catanh library function................................... 193

cbrt library function 180

ccos library function 193

ccosh library function 193

ceil library function 187

cexp library function...................................... 193

cexp10 library function.................................. 193

392

cimag library function193

cis library function..193

class libraries

floating-point vector classes363, 364, 365,
366, 370, 371, 372, 376, 379, 380, 381, 389

integer vector classes .340, 341, 344, 346, 348,
349, 351, 352, 354, 356, 360, 361, 362

class libraries332, 333, 334, 338

clog library function193

clog2 library function193

code-coverage tool..103

compiling

and linking..60

controlling ..51

from the command line.................................40

phases of ...39

with alternate tools and paths53

with make ...42

compiling..51

-complex_limited_range option........................11

compound library function184

configuration files...49

conj library function193

conventions

for class libraries...4

for document...4

for intrinsics..4

copysign library function................................190

cos library function...176

cosd library function.......................................176

cosh library function.......................................179

cot library function ...176

cotd library function176

CPATH enviroment variable48

CPLUS_INCLUDE_PATH enviroment variable
..48

cpow library function193

cproj library function......................................193

cpu dispatch ... 87

creal library function 193

-create_pch option11, 55

csin library function....................................... 193

csinh library function..................................... 193

csqrt library function 193

ctan library function....................................... 193

ctanh library function..................................... 193

-cxxlib-gcc option.......................................11, 71

-cxxlib-icc option..11, 71

data alignment ... 129

data dependence... 121

default

compiler behavior .. 39

compiler options .. 37

denormal results... 54

-dM option ... 11

-Dname[=value] option.................................... 11

-dryrun option.. 11

-dynamic-linker option 11

-E option .. 11

ECCCFG enviroment variable......................... 48

ECPCCFG enviroment variable 48

EMMS Instruction ... 210

environment

customing .. 48

setting with iccvars.sh.................................. 40

variables... 48

-EP option.. 11

erf library function... 184

erfc library function 184

exp library function 180

exp10 library function 180

exp2 library function 180

expm1 library function 180

-F option .. 11

-f[no]verbose-asm option................................. 11

Intel® C++ Intrinsics Reference

393

fabs library function190

-falias option...11

-fast option..11

-fcode-asm option...11

fdim library function.......................................190

features

and benefits...2

new ...1

-ffnalias option ...11

files

configuration ..49

for compiler input ...42

for precompiled headers55

include ..50

response ..50

finite library function......................................190

firstprivate ..150

floor library function187

flushing denormal results54

fma library function..190

fmax library function......................................190

fmin library function.......................................190

-fminshared option..11

fmod library function......................................189

-fno-alias option ...11

-fno-common option...11

-fno-fnalias option ..11

-fno-rtti option ..11

-fnsplit[-] option11, 100

-fp option ..11, 80

-fp_port option......................................11, 80, 81

-fPIC option..11

-fpstkchk option..11, 81

-fr32 option...11

frexp library function......................................180

-fshort-enums option ..11

-fsource-asm option ..11

-fsyntax-only option .. 11

-ftz[-] option ...11, 83

function splitting.. 100

-funsigned-bitfields option............................... 11

-funsigned-char option..................................... 11

-fvisibility option ... 11

-fvisibility-default= option 11

-fvisibility-extern= option................................ 11

-fvisibility-hidden= option............................... 11

-fvisibility-internal= option 11

-fvisibility-protected= option........................... 11

-g option... 11

gamma library function 184

gamma_r library function 184

gcc

interoperability with 71

gcc function attributes 75

-gcc-name option ..11, 71

-gcc-version= option...................................11, 71

global symbols... 63

-H option.. 11

-help option.. 11

hypot library function 180

-I option ... 11

-i_dynamic option.. 11

IA32ROOT enviroment variable 48

IA64ROOT enviroment variable 48

ICCCFG enviroment variable.......................... 48

iccvars.csh ... 40

iccvars.sh ... 40

ICPCCFG enviroment variable........................ 48

-idirafter option.. 11

ilogb library function 180

include files

searching for .. 51

include files ... 50

inline expansion..97, 98

394

-inline_debug_info option11, 92

Intel extensions...148

Intel math library60, 176, 179, 180, 184, 187,
189, 190, 193

intermediate language.......................................94

intrinsics

benefits of using ...200

for cross-processor implementation...311, 315,
318, 323

for data alignment...............................307, 308

for Itanium(R) processor ...285, 288, 291, 292,
296, 300

for new Intel processors..............283, 284, 285

MMX(TM) Technology211, 213, 215, 217,
218, 220

Streaming SIMD Extensions221, 222, 225,
226, 231, 233, 234, 235, 236, 239, 243, 244,
246, 248

Streaming SIMD Extensions 2

floating-point .249, 251, 252, 257, 259, 260,
261, 262

integer.... 263, 268, 269, 272, 274, 275, 277,
280, 281, 282

Streaming SIMD Extensions 2249

usage syntax ...203

-ip option ..11, 92, 98

-ip_no_inlining option11, 92, 97

-ip_no_pinlining option11, 97

-IPF_flt_eval_method0 option..............11, 80, 83

-IPF_fltacc[-] option.............................11, 80, 83

-IPF_fma[-] option11, 80, 83

-IPF_fp_speculation option11, 80, 83

-ipo option11, 92, 94, 95, 97, 98

-ipo_c option...11, 92

-ipo_obj option11, 92, 94, 119

-ipo_S option ..11, 92

isnan library function......................................190

-isystem option ...11

-ivdep_parallel option...............................11, 117

j0 library function ...184

j1 library function .. 184

jn library function .. 184

-Kc++ option ... 11

KMP_LIBRARY environment variable 143

KMP_STACKSIZE environment variable 143

-Knopic option... 11

-KPIC option ... 11

-L option .. 11

language conformance 76

lastprivate .. 150

LD_LIBRARY_PATH environment variable . 62

ldexp library function 180

legal information.. 2

lgamma library function 184

lgamma_r library function 184

libimf.a .. 60

libraries

managing ... 62

license .. 3

llrint library function 187

llround library function.................................. 187

log library function .. 180

log10 library function 180

log1p library function 180

log2 library function 180

logb library function 180

-long_double option....................................11, 81

loop transformation.. 117

lrint library function....................................... 187

lround library function................................... 187

-M option ... 11

make .. 42

makefile ... 42

-march=cpu option......................................11, 85

math library ... 60

matrix multiplication 131

-mcpu=cpu option.. 11

Intel® C++ Intrinsics Reference

395

-MD option ...11

-MF option..11

-MG option ...11

-MM option ..11

-MMD option ...11

-mno-relax option ...11

-mno-serialize-volatile option...........................11

modf library function......................................187

-mp option ..11, 81

-mp1 option ..11, 80, 81

-mrelax option ..11

-mserialize-volatile option................................11

-MX option ...11

nearbyint library function187

nextafter library function................................190

nexttoward library function190

-no_cpprt option ...11

-nobss_init option ...11

-nodefaultlibs option...11

-no-gcc option...11, 71

-nolib_inline option11, 81, 92

-nostartfiles option..11

-nostdinc option..11

-nostdlib option...11

-O option ..11, 95

-O0 option...11, 80

-O1 option...11, 79

-O2 option...11, 79

-O3 option...11, 79

-Ob option...11

OMP_DYNAMIC environment variable143

OMP_NESTED environment variable143

OMP_NUM_THREADS environment variable
..134, 143

OMP_SCHEDULE environment variable.....134,
143

-openmp option...11, 140

OpenMP*

clauses.. 141

directives.. 141

OpenMP*.......137, 140, 141, 142, 143, 144, 147,
148, 153

-openmp_report option11, 140

-openmp_stubs option...................................... 11

-opt_report option.. 11

-opt_report_file option..............................11, 159

-opt_report_help option11, 159

-opt_report_level option11, 159

-opt_report_phase option..........................11, 159

-opt_report_routine option........................11, 159

optimization

for floating-point precision81, 83

for Intel processors85, 86

high-level language.................................... 117

interprocedural......................92, 94, 95, 97, 98

parallel programming.133, 134, 135, 137, 140,
141, 142, 143, 144, 147, 148, 153

profile-guided99, 100, 101, 102, 103, 109,
114, 115, 116

restricting... 80

vectorization119, 120, 121, 122, 123, 124,
125, 129, 131

optimization... 79

options

cross reference ... 31

default .. 37

new .. 7

quick reference .. 11

-P option .. 11

-par_report option.............................11, 134, 135

-par_threshold[n] option11, 134, 135

-parallel option..................................11, 120, 134

PATH enviroment variable.............................. 48

-pc32 option... 11

-pc64 option... 11

-pc80 option... 11

396

-pch option..11, 55

-pch_dir option ...11, 55

-pcn option..81

pgopti.dpi..101, 102

pow library function180

-prec_div option11, 80, 81

precompiled headers

organizing source files for55

precompiled headers...55

predefined macros

__DATE__ ...46

__ECC ..46

__EDG__..46

__EDG_VERSION__...................................46

__ELF__...46

__extension__...46

__gnu_linux__..46

__GNUC__...46

__GNUC_MINOR__46

__GNUC_PATCHLEVEL__46

__GXX_ABI_VERSION46

__HONOR_STD ..46

__i386...46

__i386__...46

__ia64 ...46

__ia64__ ...46

__ICC ...46

__INTEL_COMPILER46

__itanium__..46

__linux..46

__linux__..46

__LONG_DOUBLE_SIZE__46

__lp64...46

__LP64__ ...46

__NO_INLINE__...46

__NO_MATH_INLINES46

__NO_STRING_INLINES46

__OPTIMIZE__... 46

__PTRDIFF_TYPE__ 46

__QMSPP_ .. 46

__REGISTER_PREFIX__ 46

__SIGNED_CHARS__ 46

__SIZE_TYPE__... 46

__STDC__... 46

__STDC_HOSTED__ 46

__TIME__ ... 46

__unix .. 46

__unix__ .. 46

__USER_LABEL_PREFIX__ 46

__VERSION__.. 46

__WCHAR_TYPE__ 46

__WINT_TYPE__....................................... 46

_INTEGRAL_MAX_BITS 46

_LP64 .. 46

_PGO_INSTRUMENT................................ 46

i386.. 46

ia64 .. 46

linux... 46

unix .. 46

preprocessor

options ... 43

PROF_DIR environment variable 101

-prof_dir option ..11, 101

PROF_DUMP_INTERVAL environment
variable .. 116

-prof_file option... 11

-prof_format_32 option 11

-prof_gen[x] option.....................11, 99, 100, 101

PROF_NO_CLOBBER environment variable
... 101

-prof_use option..................................11, 99, 100

profile information..........................114, 115, 116

profmerge .. 102

-Qinstall option.. 11

-Qlocation option... 11

Intel® C++ Intrinsics Reference

397

-Qoption option11, 92, 98

-Qoption specifiers ...92

-qp option ...11

-rcd option ..11, 81

remainder library function189

remquo library function..................................189

requirements

hardware ...3

software ..3

response files ..50

-restrict option ..76

rint library function...187

round library function.....................................187

-S option ...11

scalb library function......................................180

scalbln library function...................................180

scalbn library function....................................180

shared libraries ...62

-shared option ...11

-shared-libcxa option ..11

sin library function ...176

sincos library function176

sincosd library function176

sind library function176

sinh library function179

sinhcosh library function179

software pipelining ...154

-sox[-] option..11

sqrt library function ..180

-static option ...11

-static-libcxa option ..11

-std=c99 option...11

-strict_ansi option11, 76

strip mining...124

structure tag alignments....................................54

support ..2

symbol preemption ...64

-syntax option .. 11

-T option .. 11

tan library function .. 176

tand library function 176

tanh library function 179

test-prioritization tool 109

tgamma library function 184

threshold control .. 135

timing application .. 160

TMP enviroment variable 48

-tpp1 option ... 11

-tpp2 option ... 11

-tpp5 option ... 11

-tpp6 option ... 11

-tpp7 option ... 11

trunc library function 187

-u option... 11

-U option.. 11

-unroll[n] option .. 11

-unroll0 option ... 11

unwinder library .. 60

-use_asm option... 11

-use_msasm option .. 11

-use_pch option ..11, 55

-v option... 11

variables

environment ... 48

setting environment 40

-vec_report[n] option................................11, 119

vectorizer 119, 120, 121, 122, 123, 124, 125, 129

-w option.. 11

-Wall option... 11

-Wbrief option ... 11

-Wcheck option ... 11

-wd option.. 11

-we option.. 11

-Werror option ... 11

398

-Wl option...11

-wn option...11

-Wp64 option..11

-wr option ...11

-ww option..11

-x option 11, 31, 50, 51, 76, 81, 85, 119, 120

-Xa option...11

-Xc option.. 11

xild..94, 95, 97

-Xlinker option .. 11

y0 library function ... 184

y1 library function ... 184

yn library function ... 184

-Zp option .. 11

	Disclaimer and Legal Information
	Table of Contents
	Welcome to the Intel® C++ Compiler
	What's New in This Release
	Features and Benefits
	Product Web Site and Support
	System Requirements
	FLEXlm* Electronic Licensing
	Related Publications
	How to Use This Document

	Compiler Options Quick Reference
	New Options
	Options Quick Reference Guide
	Compiler Options Cross Reference
	Default Compiler Options

	Building and Debugging Applications
	Getting Started
	Building Applications from the Command Line
	Compilation Options
	Linking
	Debugging

	Using Libraries
	Default Libraries
	Intel® Shared Libraries
	Managing Libraries
	Compiling for Non-shared Libraries

	gcc* Compatibility
	gcc* Interoperability
	gcc Built-in Functions
	gcc Function Attributes

	Language Conformance
	Conformance Options
	Conformance to the C Standard
	Conformance to the C++ Standard

	Compiler Optimizations
	Optimization Levels
	Floating-point Optimizations
	Optimizing for Specific Processors
	Interprocedural Optimizations
	Multifile IPO
	Inline Expansion of Functions
	Profile-guided Optimizations
	High-level Language Optimizations (HLO)

	Parallel Programming
	Vectorization (IA-32 only)
	Auto Parallelization
	Parallelization with OpenMP*
	Intel Extensions to OpenMP

	Optimization Support Features
	Compiler Directives
	Optimizer Report Generation
	Timing Your Application

	Compiler Limits
	Key Files
	Key Files Summary for IA-32 Compiler
	Key Files Summary for Itanium® Compiler

	Diagnostics and Messages
	Diagnostic Messages

	Intel Math Library
	Intel® C++ Intrinsics Reference
	Introduction
	Intrinsics Implementation Across All IA
	MMX™ Technology Intrinsics
	Streaming SIMD Extensions
	Streaming SIMD Extensions 2
	New IA-32 Intrinsics
	Intrinsics for Itanium® Instructions
	Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Intrinsics Cross-processor Implementation

	Intel® C++ Class Libraries
	Introduction to the Class Libraries
	Integer Vector Classes
	Floating-point Vector Classes
	Classes Quick Reference
	Programming Example

	Index

